
SMART CONTRACT AUDIT

December 6th 2022 | v.	1.0

score

98

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

Symbiosis Smart Contract Audit

This document outlines the overall security of the Symbiosis smart contracts evaluated by
the Zokyo Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Symbiosis smart contract
codebase for quality, security, and correctness.

Contract Status

low Risk

Testable Code

The testable code verified by Zokyo Security is sufficient to cover the industry standard.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract but rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that can withstand the Ethereum network’s fast-paced and rapidly
changing environment, we recommend that the Symbiosis team put in place a bug bounty
program to encourage further active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

26Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files written by Zokyo Security

2

Symbiosis Smart Contract Audit

6Protocol overview

12Complete​ ​Analysis

5Executive Summary

11Structure​ ​and​ ​Organization​ ​of​ ​the Document

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

Symbiosis Smart Contract Audit

Within the scope of this audit, the team of auditors reviewed the following contract(s):

AggregateAccount.sol

DSMath.sol

SafeCast.sol

SignedSafeMath.sol

Pool.sol

The source code of the smart contract was taken from the Symbiosis repository:  
https://github.com/symbiosis-finance/octopool-audit

Initial commit: 31401e5b3f88205ed1285cb35cb93c1b9d2fdbb9

Final commit: 6aa057f01de274213f600e8c55778f0f1b40f2ee

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Testing contract logic against common
and uncommon attack vectors.

04 Thorough manual review of the
codebase line by line.

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most resent vulnerabilities;

Meets best practices in code readability, etc.

4

Symbiosis Smart Contract Audit

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of Symbiosis smart contracts. To do so, the code was reviewed line by line
by our smart contract developers, who documented even minor issues as they were
discovered. Part of this work includes writing a test suite using the Anchor testing
framework. In summary, our strategies consist largely of manual collaboration between
multiple team members at each stage of the review:

5

Symbiosis Smart Contract Audit

Executive Summary

 During the audit, the Zokyo Security team has reviewed the whole set of contracts and
libraries provided by the Symbiosis team. The protocol cosists of the main smart contract,
Pool.sol, and a set of helper libraries. The protocol represents a pool for multiple assets that
allows users to deposit and swap assets as well as earn fees for each swap.

 The goal of the audit was to verify that the contracts are implemented corresponding to
the best security and Solidity practises. This includes analyzing the contracts against the
auditors’ checklist of vulnerabilities and ensuring that the best Solidity practises in terms of
gas spendings and optimizations are applied. Part of the audit was to verify the correctness
of the implemented bussiness logic in the contracts. In order to fulfill this task, the Zokyo
Security team requested the documentation of the protocol. The contracts were carefully
checked to correspond the provided documentation. One of the features that is worth
mentioning is that the pool’s supply of assets might be decreased during swaps. Due to this,
at some point, the pool might not have enough supply to pay its liability to users. However,
as explained in the documentation, such functinality is a part of the bussiness logic and
users should wait until there is enough assets in the pool to pay full liability. We recommende
the Symbiosys team to share this documentation with the users of the protocol as it contains
a detailed overview of the protocol. It should also be mentioned that Pool.sol is an
upgradable contract. The correct work of the contracts depends on the initiate parameters
of the pools, such as amplification factor, LP fee, and fee ratio, which are set during the
deployment and can be changed at any time by the owner of the contract. We recommend
the Symbiosis team to set these parameters with extra caution.

 There were some high-severity issues found in the contracts during the audit. The issues
were connected to the block of the withdrawal function, sending liquidity to the wrong
address, unsafe type casts. Other issues were connected to the bussiness logic verification,
the absence of parameters validation, code style, and gas optimization suggestions. All of
the issues were successfully fixed by the Symbiosis team. Zokyo Security has also prepared
a set of unit tests and additional scenarios. All the tests listed in the report were written by
the team of auditors.

 The overall security of the protocol is high enough. The contracts correspond to the
documentation. The code is well-written, has good readability, and contains a detailed
natspec documentation.

6

Symbiosis Smart Contract Audit

protocol overview

Pool.sol

OctoPool is a protocol that allows users to deposit, swap,

and withdraw assets to/from Pool Protocol. It has 2 main

contracts and 3 contracts responsible for math libraries

Pool.sol is a contract that manages deposits, withdrawals, and swaps. It holds a mapping of assets and parameters.

AggregateAccount.sol is a contract that represents groups of assets

SignedSafeMath.sol is a contract responsible for mathematical operations

SafeCast.sol is a contract responsible for converting a signed int256 into an unsigned uint256 and the other way.

In Octopool users can:

- deposit assets to the Pool (Pool.sol)

- swap assets in the Pool (Pool.sol)

- withdraw assets from the Pool (Pool.sol)

uint256 lpFee - lpFee of
the Pool

uint256 lpDividendRatio -
the ratio of lpFee that
should distribute to LP

address devaddr -
address of dev

initialize()

Deployer

uint256 a - amplification
factor of the pool

__Ownable_init()

__Pausable_init_unchained()

__ERC1155_init()

assetToIndex[asset] -
index to asset`s addres

mapping

addAssetOcto()

Owner

indexToAsset[index] -
AssetOcto structs mapping

Creates new AssetOcto
instance and

uint256 _newMaxSupply -
new max supply of the

given asset

changeMaxSupply()

Admin

uint256 _tokenID - The id
of token to change max

supply

Sets asset`s new max
supply

removeAsset()

Owner

uint256 _index - The id of
token to remove

Sets asset to inactive
status marking it in assets

mapping

Sets new AssetOcto
instance to all assets

mapping

7

Symbiosis Smart Contract Audit

protocol overview

Pool.sol

Pool.sol

PausableUpgradeable()

Initializable()

OwnableUpgradeable()

ERC1155Upgradeable()

unpause()

Owner

pause()

uint256 _newA - new
pool's amplification

factor

Unpauses pool, enabling
certain operations

Owner

uint256 _newLpFee - new
pool's lpFee parameter

Owner

setA()

Checks for the pools
amplification factor to be

less or equal than 1

Owner

Changes the pools
amplification factor

Pauses pool, restricting
certain operations

Checks for the pools lpFee
to be less or equal than 1

setLPFee()

Changes the pools lpFee

8

Symbiosis Smart Contract Audit

protocol overview

Pool.sol

uint256
_newLpDividendRatio -
new LP dividend Ratio
parameter of the Pool

Owner

Checks for the new LP
dividend Ratio parameter
to be less or equal than 1

Mints all fee

setFeeRatio()

Changes the pools LP
dividend Ratio parameter

address _newFeeTo - new
fee beneficiary

Owner

Checks for the address
not to be zero address

setFeeTo()

Changes the fee
beneficiary

Checks for amount to
deposit is greater than 0

Pool mints fee

Transfer of tokens from
user to Pool

Checks for deposit`s
liquidity to be greater than

min. liquidity

uint256 _id - The token
address to be deposited

Owner

uint256 _amount - The
amount to be deposited

deposit()

address _to - The user
accountable for deposit,
receiving the assets (lp)

uint256 _minimumLiquidity
- minimum amount for

deposit

uint256 _deadline - The
deadline to be respected

uint256
_newMintFeeThreshold -
new mint fee threshold

Owner

Sets min fee to mint

setMintFeeThreshold()

9

Symbiosis Smart Contract Audit

protocol overview

Pool.sol

uint256 _id - The token
to be withdrawn

uint256 _id - The if of the
token to collect fee

uint256
_amountToWithdraw - The
liquidity to be withdrawn

Owner

uint256 _minAmount - The
minimum amount that
will be accepted by user

address _to - The user
receiving the withdrawal

Owner

Checks for liquidity to
withdraw to be greater

than 0

uint256 _deadline - The
deadline to be respected

Send fee collected to the
fee beneficiary

withdraw()

mintFee()

Owner

Burns LP tokens

Checks for Asset`s amount to
withdraw to be greater than

min. amount to withdraw

returns equilCovRatio
and invariant

Revert if cov ratio < 1% to
avoid precision error

globalEquilCovRatio()

Transfer of asset from
Pool to user

uint256 _fromID - The
token being inserted into

Pool by user for swap

uint256 _toID - The token
wanted by user, leaving

the Pool

uint256 _fromAmount The
amount of from token

inserted

address _to - The user
receiving the result of swap

uint256 _minToAmount - The
minimum amount that will be

accepted by user as result

uint256 _deadline - The
deadline to be respected

Owner

Checks for "from" asset`s
amount is greater than 0

Calculating parameters
for swap

Checks for assets to swap
are not the same assets

Transfers "from" asset
from user to Pool

swap()

Transfers "to" asset from
Pool to user

10

Symbiosis Smart Contract Audit

protocol overview

AggregateAccount.sol

Ownable.sol AggregateAccount.sol

string accountName_ -
The name of the

aggregate account

string accountName_ -
The name of the

aggregate account

Deployer

Checks for the address
not to be zero address

constructor()

Changes the fee
beneficiary

string accountName_ -
the new name of the

account

Owner

Changes Account Name

setAccountName()

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational​

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, sections are arranged from the most to the least critical one.
Issues are tagged as “Resolved” or “Unresolved” depending on whether they have been
fixed or addressed. The issues that are tagged as “Verified” contain unclear or suspicious
functionality that either needs explanation from the Client or remains disregarded by the
Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ the ​Document

11

Symbiosis Smart Contract Audit

Complete​ ​Analysis

12

Symbiosis Smart Contract Audit

High-1

Users can deposit, withdraw, and swap assets that were removed by the
owner.

Pool.sol, deposit(), withdraw(), swap()

In AssetOcto struct, there is a field for marking whether the asset is active. After
initializing
this parameter in addAssetOcto(), it is might be changed by calling
the owner`s
removeAsset() method, which is set to false. Yet, in the deposit(),
withdraw(), and swap()
methods, there are no checks for the status of the asset, and users can perform actions
even after “removing” the asset by the owner.

Recommendation:

Add checks in deposit(), withdraw(), and swap() for validating that
the asset is active.

Post-audit.

A validation for not allowing actions with removed assets was added

High-2

Minting LP tokens and their withdrawal from the Pool to the wrong address.

Pool.sol, deposit(), withdraw()

*deposit(): When calling deposit method parameter `_to` is given by input parameters as a
receiver of liquidity
but LP tokens are minted to msg.sender instead of a provided destination
address.

*withdraw(): When calling withdraw method parameter `_to` is given by input
parameters as
a receiver of tokens but tokens are transferred from Pool to msg.sender.

Recommendation:

Replace “msg.sender” with “_to” in the deposit and withdraw
methods.

Post-audit.

The `_to` parameter is used in both methods now.

13

Symbiosis Smart Contract Audit

High-3

Possible int256 overflow when converting uint256 to int256.

Pool.sol, multiple methods

In the internal/private methods, when performing mathematical operations, there are

numerous conversions from uint256 to int256 without a proper safety check, which
may
result in int256 overflow.

Recommendation:

Add safety checks so that there is no int256 overflow.

Post-audit.

SafeCast library is used now.

High-4

Possible blockage of the assets withdrawal.

Pool.sol, withdraw()

When removing assets by setting their status to inactive, the status can't be changed in the
future. In other words, the asset's status can't be set to active again, and due to the
validation that only allows for active assets withdrawal, its withdrawal is blocked.

Recommendation:

Leave the possibility to withdraw assets from the removed pools.

Post-audit.

Withdrawals are not blocked now. The Pool can also be set as active or inactive anytime.

14

Symbiosis Smart Contract Audit

Medium-1

maxSupply of assets is never used for the safety checks in methods.

Pool.sol, deposit(), swap()

The checks for not exceeding the asset’s maxSupply are missing in the deposit() and
swap()
methods. The maxSupply field of the AssetOcto struct might be increased or decreased
by
the owner but maxSupply field is not used in methods of depositing
assets.

Recommendation:

Add the checks for not exceeding maxSupply when depositing
assets to the Pool.

Post-audit.

Safety checks were added in the deposit() and swap() methods to ensure that assets do not

exceed maxSupply when added to the Pool.

LOW-1

Missing validation checks in multiple methods.

Pool.sol, initialize(), addAssetOcto(), changeMaxSupply(), removeAsset(), withdraw()

*In initialize(): the _a and _lpFeech, arguments are not validated despite the fact
that there is
a check for argument <= WAD in the setter for _lpFee.

*In addAssetOcto(): the checks for whether the asset by the given token was already added

and whether the given token address does not equal to zero are missing.

*In changeMaxSupply(): the checks for whether the given _tokenId is valid and for
validating
_newMaxSupply are missing.

*In removeAsset(): the check for whether the given _tokenId is valid is missing.

*In withdraw(): the check for whether the user owns not less LP tokens that they

want to burn is missing.

Recommendation:

Add validation checks for input parameters.

Post-audit.

All validations were applied.

15

Symbiosis Smart Contract Audit

low-2

Wrong variable is validated in the setter.

Pool.sol, setA()

In the given setter, there is requirement for the old current “a” value, but not for the one
that
was set (“_newA”)

Recommendation:

Change the validation of the old value to the new value.

Post-audit.

Validation of the new value was implemented.

low-3

Possible mess with the owner rights and devaddr rights.

Pool.sol, initialize()

In the initialize() method, the devaddr variable is initialized with the msg.sender value as it is

the same as the owner variable. After the initialization, devaddr can be changed by calling

the setDev() method, but from the deployment till that moment, the owner and
devaddr have
the same value but different roles.

Recommendation:

Isolate devaddr from the owner.

Post-audit.

The devaddr role was removed.

16

Symbiosis Smart Contract Audit

low-4

The validation check for the correct liquidity value in deposit() is redundant.

Pool.sol, deposit()

In the deposit() method, the check for the liquidity to be greater than 0 (line 374) is useless
since there is later another check for the liquidity to be greater than _minimumLiquidity. And
as
_minimumLiquidity is of uint256, then first “require” is useless.

Recommendation:

Remove the check for the liquidity to be greater than 0

Post-audit:

Redundant validation check was removed.

low-5

The same asset can be added more than once.

Pool.sol, addAssetOcto()

In the addAssetOcto method, there is no check whether this asset is already added
to Octo.

Recommendation:

Add a validation check for not adding the same asset more than
once.

Post-audit:

The validation was implemented.

17

Symbiosis Smart Contract Audit

Info-1

Code style issues.

Pool.sol, multiple methods

*According to the code style recommendations from the Solidity documentation, the order
of
the functions should be the following: constructor, fallback function (if exists), external,
public,
internal, private. In the Pool contract, the methods of all visibility are messed up.

*All of the internal and private methods’ names start with “_” but not in
mintAllFee(), which is
marked as internal.

Recommendation:
Follow the Solidity style guide recommendations. Consider
changing the name of
mintAllFee() to _mintAllFee()

Post-audit:

The order of functions was changed according to the Solidity documentation.

18

Symbiosis Smart Contract Audit

info-2

Reentrancy: State variables are written after external calls.

Pool.sol, deposit()

*Reentrancy in Pool.deposit(uint256,uint256,uint256,address,uint256)

(Pool.sol#344-390) External calls:

IERC20Upgradeable(indexToAsset[_id].token).safeTransferFrom(address(msg.send

er),address(this),_amount) (Pool.sol#359-363)

State variables written after the call(s):

- _mintFee

 - indexToAsset[id].liability += liabilityToMint

 - indexToAsset[id].cash += lpDividend

- indexToAsset[_id].cash += _amount.toWad(indexToAsset[_id].decimals)

- indexToAsset[_id].liability += liabilityToMint

- indexToAsset[_id].totalSupply += liquidity

*Reentrancy in Pool.deposit(uint256,uint256,uint256,address,uint256)

(Pool.sol#344-390) External calls:

IERC20Upgradeable(indexToAsset[_id].token).safeTransferFrom(address(msg.send

er),address(this),_amount) (Pool.sol#359-363)

State variables written after the call(s):

- _mint(msg.sender,_id,liquidity)

**The issue is marked as informational because assets can be added only by the owner of
the contract.

Recommendation:

Pay attention to the assets that you add to the Pool.

Post-audit:

State variables are now written before the external calls.

19

Symbiosis Smart Contract Audit

Info-3

Events’ arguments are not standardized.

Pool.sol, multiple events

When declaring, some of the events addresses are marked as indexed, while others have no
declarations at all.

Recommendation:

Mark all addresses as indexed in the events declaration.

Info-4

Variable’s visibility should be changed to immutable.

AggregateAccount.sol, isStable

isStable is initialized in the constructor and cannot be set again, so marking this variable as
immutable is preferable.

Recommendation:

Consider marking isStable variable as immutable.

20

Symbiosis Smart Contract Audit

Info-5

Incrementation of lastIndex in addAssetOcto is redundant.

Pool.sol, addAssetOcto()

When creating new struct instance of indexToAsset, there is the “lastIndex + 1” indexing.
After that, when adding data to the assetToIndex mapping, there is
a pre-incrementation of
the “++lastIndex” index.

Recommendation:

Consider pre-incrementing “lastIndex” when setting values in
theindexToAsset struct
instance.

Post-audit:

Pre-incrementation was implemented.

Info-6

Some of the methods from math libraries are never used.

*SafeCast.sol: toInt256(), toUint256()

*SignedSafeMath.sol: fromWad(), sqrt(), toUint(), toWad()

Recommendation:

Remove methods that are never used.

Post-audit:

Unused methods were removed or are used now.

21

Symbiosis Smart Contract Audit

Info-7

Multiple to-do comments in pre-production code.

Pool.sol, multiple methods

Pre-production contracts should not have marks for “to-do” features.

Recommendation:

Implement “to-do” features.

Post-audit:

“to-do” features were implemented.

Info-8

The event is not emitted when executing the corresponding method.

Pool.sol, removeAsset()

In the removeAsset method, the corresponding declared event, AssetRemoved, is not

emitted.

Recommendation:

Emit the AssetRemoved event in the removeAsset method.

Post-audit:

Event emitting was added.

22

Symbiosis Smart Contract Audit

Loss of the Pool share due to external swaps.

Pool.sol, swap()

When swapping assets, holders of “assetTo” get their assets decreased,
while no LP tokens
are moved and no “assetFrom” LP tokens are added
to “assetTo” holders.

Flow example:

 1) user1 deposits asset1 of the N amount, user2 deposits asset2 of the M amount

 2) user1 swaps asset1 to asset2 sending asset2 to user1, but neither asset1 nor

 LP tokens for asset1 are sent to user2

This way, the amount of the Pool share as the amount of asset2 owned by user2 is

decreased permanently. Thus, it is unclear why user2 should deposit
assets to the Pool as
the user is just going to receive less assets than deposited.

Recommendation:

Consider this a permanent loss of user’s assets that were deposited to the Pool.

Post-audit:

After the Symbiosis team has provided a documentation on Octopool, it was verified that
such functionality is a part of the bussiness logic. Users need to wait until the Pool can pay
out full liability.

Info-9

23

Symbiosis Smart Contract Audit

Info-10

Users cannot withdraw assets.

Pool.sol, withdraw()

In the withdraw method, users' funds are being withdrawn with .safeTransferFrom
by
spending tokens from the address of the Pool contract with no prior approval from the Pool

itself.

Recommendation:

Change .safeTransferFrom to .safeTransfer.

Post-audit.

.safeTransferFrom was replaced with .safeTransfer.

Note. The issue was original marked as critical, since it prevents users from withdrawing their
funds. However, according to the client’s clarification, this bug was from the previous version
of the contracts and was removed during the audit. Nevertheless, the issue is still present in
the report as an informational, since auditors have still verified that the issue has no impact
on the contract’s ability to operate.

PassPassAccess Management Hierarchy

PassArithmetic Over/Under Flows Pass

AggregateAccount.sol SignedSafeMath.sol

PassPassDelegatecall

Pass PassHidden Malicious Code

PassPassUnchecked CALL
Return Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassPassRe-entrancy

PassPassUnexpected Ether

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of Randomness)

PassPassShort Address/ Parameter Attack

PassPassRace Conditions / Front Running

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

24

Symbiosis Smart Contract Audit

Pass PassPassAccess Management Hierarchy

Pass PassArithmetic Over/Under Flows Pass

DSMath.sol SafeCast.sol Pool.sol

Pass PassPassDelegatecall

Pass Pass PassHidden Malicious Code

Pass PassPassUnchecked CALL
Return Values

Pass PassPassExternal Contract Referencing

Pass PassPassGeneral Denial Of Service (DOS)

Pass PassPassFloating Points and Precision

Pass PassPassSignatures Replay

Pass PassPass
Pool Asset Security (backdoors in the
underlying ERC-20)

Pass PassPassRe-entrancy

Pass PassPassUnexpected Ether

Pass PassPassDefault Public Visibility

Pass PassPassEntropy Illusion (Lack of Randomness)

Pass PassPassShort Address/ Parameter Attack

Pass PassPassRace Conditions / Front Running

Pass PassPassUninitialized Storage Pointers

Pass PassPassTx.Origin Authentication

25

Symbiosis Smart Contract Audit

Contract: Pool
Pool setting: initialization, pause/unpause, setters
✓ .initialize() - Correct (81ms)
✓ .initialize() - Should not initialize twice
✓ .pause() - Admin should pause
✓ .pause() - Not admin should not pause
✓ .unpause() - Admin should not unpause if not paused
✓ .unpause() - Admin should unpause if paused
✓ .pause() - Contract don`t work if it is paused (116ms)
✓ .setDev() Admin should set new Dev (111ms)
✓ .setDev() Admin should not set AddressZero as new Dev
✓ .setA() Admin should set new correct amplification factor (110ms)
✓ .setA() Admin should not set new uncorrect amplification factor (test should pass in
correct code)
✓ .setLPFee() Admin should set new correct LPFee (109ms)
✓ .setLPFee() Admin should not set uncorrect LPFee
✓ .setFeeRatio() Admin should set new correct feeRatio (109ms)
✓ .setFeeRatio() Admin should not set new uncorrect feeRatio
✓ .setFeeTo() Admin should set new correct address to fee (109ms)
✓ .setFeeTo() Admin should not set AddressZero to fee address
✓ .setMintFeeThreshold() Admin should set new mint fee threshold (112ms)
✓ .setVeSISAddress() Admin should set new VeSIS (109ms)
✓ .setVeSISAddress() Admin should not set ZeroAddress to VeSIS (test should pass in
correct code)
Work with assets: adding, change, remove
✓ .addAssetOcto() - Admin should add new asset to pool
✓ .changeMaxSupply() - Admin should change max supply in existing asset
✓ .changeMaxSupply() - Admin should not change max supply in non-existing asset
(test should pass in correct code)
✓ .removeAsset() - Admin should remove existing asset

As a part of our work assisting Symbiosis in verifying the correctness of their contract code,
our team was responsible for writing integration tests using the Hardhat testing framework.

The tests were based on the functionality of the code, as well as a review of the Symbiosis
contract requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

26

Symbiosis Smart Contract Audit

✓ .removeAsset() - Admin should not remove non-existing asset (test should pass in
correct code)
✓ .removeAsset() - Admin should not remove removed existing asset (test should pass
in correct code)
Deposit and Withdraw
✓ .deposit() - User should do correct deposit (112ms)
✓ .deposit() - User should not do deposit with amount = 0 (56ms)
✓ .deposit() - User should not do deposit with past deadline (55ms)
✓ .deposit() - User should not do deposit he set more minimum liquidity (85ms)
✓ .withdraw() - User should correct withdraw (123ms)
✓ .withdraw() - User should not withdraw too low amount (157ms)
✓ .withdraw() - User should not withdraw with liquidity = 0 (99ms)
Swap
✓ .swap() - User should swap with correct parameters (218ms)
✓ .swap() - User should not swap tokens what hasn`t (235ms)
✓ .swap() - User should not swap if he hasn`t deposits (105ms)
✓ .swap() - User should not swap token for itself (55ms)
✓ .swap() - User should not swap zero tokens (207ms)
Other functions and cases
✓ .globalEquilCovRatio() - Correct work (103ms)
✓ .spreadAccumulatedError() - Correct work (with amount = 0) (122ms)
✓ .spreadAccumulatedError() - Error if amount > accumulated error) (112ms)
✓ .mintFee() - Correct transfer fee (323ms)
✓ .mintFee() - Not transfer fee if dividend = 0 (294ms)
✓ .mintFee() - If fee not collected - early return (94ms)

44 passing (12s)

27

Symbiosis Smart Contract Audit

Pool.sol 97.58 78.33 100

FILE % STMTS % BRANCH % FUNCS

We are grateful for the opportunity to work with the Symbiosis team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the Symbiosis team put in place a bug
bounty program to encourage further analysis of the smart contract by
third parties.

