
Smart Contract
Security Assessment

Prepared for

Symbiosis

Online report

symbiosis-finance-router-bridge

 18/03/2022

omniscia.io info@omniscia.io

SMART CONTRACT AUDITS
Omniscia

https://omniscia.io/symbiosis-finance-router-bridge/
https://omniscia.io/
mailto:info@omniscia.io

We were tasked with auditing the codebase of Symbiosis Finance and in particular the bridge
and router modules meant to support their cross-chain synthetic asset system.

Over the course of the audit we identified a severe front-running vulnerability in the way
reversions of relayed transactions occur that allow a user to cancel the transaction of another
user arbitrarily.

Additionally, we were able to pinpoint several optimizations that can be applied across the
codebase that we advise the Symbiosis Finance team to consider and apply along with
remediations to all vulnerabilities identified within the report.

Meta Router Bridge Security Audit

Audit Overview

The Symbiosis Finance team remediated all the medium-severity and higher exhibits within the
report adequately and alleviated a portion of the minor-to-informational severity findings
according to their discretion.

The codebase can be considered of a high quality and adequately documented to be
integrated by external projects.

The latest update to the codebase introduced graceful error handling that should not be
considered as part of the audit scope.

Post-Audit Conclusion

Files in Scope Repository Commit(s)

,
,
,

,
,
,

,
,
,

,
,
,

,
,
,

,
,
,

,
,
,

,
,
,

Contracts Assessed

BridgeV2.sol (BV2) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

MetaRouterV2.sol (MRV) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

MetaRouteStructs.sol (MRS) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

Portal.sol (POR) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

RelayRecipientUpgradeable.sol (RRU) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

SyntERC20.sol (SER) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

Synthesis.sol (SYN) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

SyntFabric.sol (SFC) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/bridge-v2/BridgeV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/bridge-v2/BridgeV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/synth-contracts/bridge-v2/BridgeV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/synth-contracts/bridge-v2/BridgeV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/bridge-v2/BridgeV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/metarouter/MetaRouterV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/metarouter/MetaRouterV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/metarouter/MetaRouterV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/metarouter/MetaRouterV2.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/MetaRouteStructs.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/MetaRouteStructs.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/MetaRouteStructs.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/MetaRouteStructs.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/MetaRouteStructs.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/Portal.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Portal.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/synth-contracts/Portal.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/synth-contracts/Portal.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/Portal.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/RelayRecipientUpgradeable.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/RelayRecipientUpgradeable.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/synth-contracts/RelayRecipientUpgradeable.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/synth-contracts/RelayRecipientUpgradeable.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/RelayRecipientUpgradeable.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/SyntERC20.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/SyntERC20.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/synth-contracts/SyntERC20.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/synth-contracts/SyntERC20.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/SyntERC20.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/Synthesis.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/synth-contracts/Synthesis.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/synth-contracts/Synthesis.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/Synthesis.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/SyntFabric.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/SyntFabric.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/synth-contracts/SyntFabric.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/synth-contracts/SyntFabric.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/SyntFabric.sol

Files in Scope Repository Commit(s)

,
,
,

,
,
,

Timelock.sol (TIM) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

Wrapper.sol (WRA) contracts-audit-with-tests

707f038827
796b5eef15
dd00ff3939
50dda9f9d2

https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/Timelock.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Timelock.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/synth-contracts/Timelock.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/synth-contracts/Timelock.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/Timelock.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/utils/Wrapper.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/utils/Wrapper.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/796b5eef153db2321446b60651de9f2d22d233c0/contracts/synth-contracts/utils/Wrapper.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/dd00ff393914aaaa3aa3b2d0a65d5cf3ec4c42e2/contracts/synth-contracts/utils/Wrapper.sol
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/50dda9f9d2e205c2804599dcc148eea0878f1c23/contracts/synth-contracts/utils/Wrapper.sol

Severity Identified Alleviated Partially Alleviated Acknowledged

2 2 0 0

2 2 0 0

13 7 0 0

14 8 0 0

During the audit, we filtered and validated a total of 3 findings utilizing static analysis tools
as well as identified a total of 28 findings during the manual review of the codebase. We
strongly recommend that any minor severity or higher findings are dealt with promptly prior
to the project's launch as they introduce potential misbehaviours of the system as well as
exploits.

2
2

13

14

Total Issues

Major (6%)
Medium (6%)
Minor (42%)
Informational (45%

Audit Synopsis

The list below covers each segment of the audit in depth and links to the respective chapter of
the report:

Compilation
The project utilizes hardhat as its development pipeline tool, containing an array of tests and scripts
coded in TypeScript.

To compile the project, the compile command needs to be issued via the npx CLI tool to hardhat :

The hardhat tool automatically selects Solidity version 0.8.0 for the subset of contracts within the audit
scope based on the version specified within the hardhat.config.ts file.

The project contains discrepancies with regards to the Solidity version used as the contract's pragma
statements are open-ended (^0.8.0).

We advise the pragma statements to be locked to 0.8.0 (=0.8.0), the same version utilized for our
static analysis as well as optimizational review of the codebase.

During compilation with the hardhat pipeline, no errors were identified that relate to the syntax or
bytecode size of the contracts.

npx hardhat compile

BASH Copy

https://omniscia.io/symbiosis-finance-router-bridge/

Static Analysis
The execution of our static analysis toolkit identified 309 potential issues within the codebase of which
305 were ruled out to be false positives or negligible findings.

The remaining 4 issues were validated and grouped and formalized into the 3 exhibits that follow:

ID Severity Addressed Title

POR-01S Leftover TODO Comment

POR-02S Variable Shadowing

SYN-01S Variable Shadowing

https://omniscia.io/symbiosis-finance-router-bridge/static-analysis/Portal-POR#POR-01S
https://omniscia.io/symbiosis-finance-router-bridge/static-analysis/Portal-POR#POR-02S
https://omniscia.io/symbiosis-finance-router-bridge/static-analysis/Synthesis-SYN#SYN-01S
https://omniscia.io/symbiosis-finance-router-bridge/

Manual Review
A thorough line-by-line review was conducted on the codebase to identify potential malfunctions and
vulnerabilities in the cross-chain synthetic asset bridge.

As the project at hand implements a cross-chain aware bridge implementation, intricate care was put into
ensuring that the flow of funds within the system conforms to the specifications and restrictions laid
forth within the protocol's specification and that all features exposed by it are blockchain-aware.

We validated that all state transitions of the system occur within sane criteria and that all rudimentary
formulas within the system execute as expected. We identified two vulnerabilities relating to access
control within the system which could have had severe ramifications to its overall operation, however,
they were conveyed ahead of time to the Symbiosis Finance team to be promptly remediated.

Additionally, the system was investigated for any other commonly present attack vectors such as re-
entrancy attacks, mathematical truncations, logical flaws and ERC / EIP standard inconsistencies. The
documentation of the project was satisfactory to a certain extent, however, we strongly recommend the
documentation of the project to be expanded at certain complex points such as the function encoding
for cross-chain interaction as those interfaces could not be validated by the codebase alone.

A total of 28 findings were identified over the course of the manual review of which 17 findings
concerned the behaviour and security of the system. The non-security related findings, such as
optimizations, are included in the separate Code Style chapter.

The finding table below enumerates all these security / behavioural findings:

https://eips.ethereum.org/
https://omniscia.io/symbiosis-finance-router-bridge/code-style
https://omniscia.io/symbiosis-finance-router-bridge/

ID Severity Addressed Title

BV2-01M Inexistent Sanitization of Commissions

MRV-01M Inexistent Validation of Calldata Slots

MRV-02M Arbitrary Approvals

MRV-03M Ill-Advised Allowance Pattern

MRV-04M Improper receive Function

POR-01M Inexistent Access Control for Reverts

POR-02M Improper receive Function

POR-03M Potential of Repeat Invocation

SER-01M Arbitrary Burn Operations

SYN-01M Inexistent Access Control for Reverts

SYN-02M Improper Reversion of Burn

SYN-03M Inconsistent Event Amount

SYN-04M Inexistent Validation of Token Existence

SYN-05M Potential of Repeat Invocation

WRA-01M Deprecated Native Asset Transfer

WRA-02M Improper receive Function

WRA-03M Inexistent Validation of Amounts

https://omniscia.io/symbiosis-finance-router-bridge/manual-review/BridgeV2-BV2#BV2-01M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/MetaRouterV2-MRV#MRV-01M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/MetaRouterV2-MRV#MRV-02M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/MetaRouterV2-MRV#MRV-03M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/MetaRouterV2-MRV#MRV-04M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Portal-POR#POR-01M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Portal-POR#POR-02M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Portal-POR#POR-03M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/SyntERC20-SER#SER-01M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Synthesis-SYN#SYN-01M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Synthesis-SYN#SYN-02M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Synthesis-SYN#SYN-03M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Synthesis-SYN#SYN-04M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Synthesis-SYN#SYN-05M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Wrapper-WRA#WRA-01M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Wrapper-WRA#WRA-02M
https://omniscia.io/symbiosis-finance-router-bridge/manual-review/Wrapper-WRA#WRA-03M
https://omniscia.io/symbiosis-finance-router-bridge/

https://omniscia.io/symbiosis-finance-router-bridge/

Code Style
During the manual portion of the audit, we identified 11 optimizations that can be applied to the
codebase that will decrease the gas-cost associated with the execution of a particular function and
generally ensure that the project complies with the latest best practices and standards in Solidity.

Additionally, this section of the audit contains any opinionated adjustments we believe the code should
make to make it more legible as well as truer to its purpose.

These optimizations are enumerated below:

ID Severity Addressed Title

BV2-01C Redundant Logical Block

MRV-01C Data Location Optimization

MRV-02C Redundant constructor Implementation

POR-01C Inexistent Error Messages

RRU-01C Redundant Implementation

RRU-02C Redundant Import

SER-01C Variable Mutability Specifier

SFC-01C Inexistent Error Messages

SFC-02C Inexistent Function Implementations

SYN-01C Inexistent Error Messages

WRA-01C Inexistent Visibility Specifier

https://omniscia.io/symbiosis-finance-router-bridge/code-style/BridgeV2-BV2#BV2-01C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/MetaRouterV2-MRV#MRV-01C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/MetaRouterV2-MRV#MRV-02C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/Portal-POR#POR-01C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/RelayRecipientUpgradeable-RRU#RRU-01C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/RelayRecipientUpgradeable-RRU#RRU-02C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/SyntERC20-SER#SER-01C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/SyntFabric-SFC#SFC-01C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/SyntFabric-SFC#SFC-02C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/Synthesis-SYN#SYN-01C
https://omniscia.io/symbiosis-finance-router-bridge/code-style/Wrapper-WRA#WRA-01C
https://omniscia.io/symbiosis-finance-router-bridge/

Portal Static Analysis Findings

Type Severity Location

Code Style

The linked TODO comment indicates code that has not been clearly defined.

contracts/synth-contracts/Portal.sol

We advise the proper amount event argument to be assessed, assimilated in the codebase and the
comment to be removed.

The amount argument was instead adjusted to one accounting for the stable bridging fee and the stable
bridging fee is now minted along the RevertSynthesizeCompleted event.

POR-01S: Leftover TODO Comment

Portal.sol:L301

Description:

Example:

emit RevertSynthesizeCompleted(

 _txID,

 txState.recipient,

 txState.amount, // TODO: which amount?

 txState.rtoken

);

SOL

298

299

300

301

302

303

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

POR-01S: Leftover TODO Comment

POR-02S: Variable Shadowing

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#code-style
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Portal.sol#L301
https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Language Specific ,

The linked variables cause a naming colission with equivalent-name variables in inherited
implementations.

contracts/synth-contracts/Portal.sol

We advise them to be renamed to avoid the colission and potentially undefined code behaviour.

The Symbiosis Finance team considered this exhibit but opted not to apply a remediation for it in the
current iteration.

POR-02S: Variable Shadowing

Portal.sol:L100 L229

Description:

Example:

address _trustedForwarder,

SOL

100

Copy

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#language-specific
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Portal.sol#L100
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Portal.sol#L229
https://omniscia.io/symbiosis-finance-router-bridge/

Synthesis Static Analysis Findings

Type Severity Location

Language Specific

The linked variables cause a naming colission with equivalent-name variables in inherited
implementations.

contracts/synth-contracts/Synthesis.sol

We advise them to be renamed to avoid the colission and potentially undefined code behaviour.

The Symbiosis Finance team considered this exhibit but opted not to apply a remediation for it in the
current iteration.

SYN-01S: Variable Shadowing

Synthesis.sol:L92

Description:

Example:

address _trustedForwarder,

SOL

92

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

SYN-01S: Variable Shadowing

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#language-specific
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L92
https://omniscia.io/symbiosis-finance-router-bridge/

BridgeV2 Manual Review Findings

Type Severity Location

Input Sanitization ,

The linked functions allow either the MPC or the owner to request and receive their commissions,
however, all input arguments are blindly trusted and no sanitization occurs on those values.

contracts/synth-contracts/bridge-v2/BridgeV2.sol

As the contract is meant to retain funds at rest, we strongly advise this trait of the system to be re-
evaluated and commissions to be tracked properly locally instead.

The Symbiosis Finance team stated that this is intended behaviour as the contract is solely meant to
retain commission funds at rest. As a result, we consider this exhibit null.

BV2-01M: Inexistent Sanitization of Commissions

BridgeV2.sol:L97-L103 L172-L178

Description:

Example:

/**

* @notice Get commission by MPC

 */

function getCommissionByMPC(address token, address to, uint256 amount) external onl

 TransferHelper.safeTransfer(token, to, amount);

 return true;

}

SOL

97

98

99

100

101

102

103

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

BV2-01M: Inexistent Sanitization of Commissions

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#input-sanitization
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/bridge-v2/BridgeV2.sol#L97-L103
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/bridge-v2/BridgeV2.sol#L172-L178
https://omniscia.io/symbiosis-finance-router-bridge/

MetaRouterV2 Manual Review Findings

Type Severity Location

Input Sanitization ,

The low level assembly writes to the two call datas are meant to fill in the value of a particular argument
for the external call, however, no validation is performed on the calldata that can lead to out-of-bounds
writes in the blocks as well as generally unexpected behaviour.

contracts/metarouter/MetaRouterV2.sol

MRV-01M: Inexistent Validation of Calldata Slots

MetaRouterV2.sol:L58 L83

Description:

Example:

uint256 finalSwapAmountIn = secondSwapAmountIn;

if (_metarouteTransaction.secondSwapCalldata.length != 0) {

 bytes memory secondSwapCalldata = _metarouteTransaction.secondSwapCalldata;

 assembly {

 mstore(add(secondSwapCalldata, 100), secondSwapAmountIn)

 }

 IERC20(_metarouteTransaction.approvedTokens[approvedTokensLength - 2]).approve(

 _metarouteTransaction.secondDexRouter,

 secondSwapAmountIn

);

 (bool secondSwapSuccess,) = _metarouteTransaction.secondDexRouter.call(

 secondSwapCalldata

);

SOL

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Copy

O N T H I S PAG E

MRV-01M: Inexistent Validation of Calldata Slots

MRV-02M: Arbitrary Approvals

MRV-03M: Ill-Advised Allowance Pattern

MRV-04M: Improper receive Function

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#input-sanitization
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L58
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L83
https://omniscia.io/symbiosis-finance-router-bridge/

We advise the calldata arguments to be validated by at least mandating they are of a particular length .

After consideration of our exhibit & with the help of an external party, the Symbiosis Finance team
identified a potential attack vector based on allowances set to the contract that arbitrary calls could
exploit. The Symbiosis Finance team introduced the concept of a gateway contract that is meant to
instead be set an allowance for by external users preventing the arbitrary calls performed by the
MetaRouterV2 contract to be able to tap into allowances set for it. Additionally, the two arbitrary calls
performed now cannot have the gateway contract as a target thereby completely nullifying any attack
vector that would affect user funds and rendering the contract secure. After additional discussion with the
Symbiosis Finance team, we concluded that malicious data stacks for the linked assembly blocks would
only affect the caller and would not pose a threat to other users or the network's state. As a result, this
exhibit is considered dealt with.

 require(secondSwapSuccess, "MetaRouterV2: second swap failed");

 finalSwapAmountIn = IERC20(

 _metarouteTransaction.approvedTokens[approvedTokensLength - 1]

).balanceOf(address(this));

}

IERC20(_metarouteTransaction.approvedTokens[approvedTokensLength - 1]).approve(

 _metarouteTransaction.relayRecipient,

 finalSwapAmountIn

);

bytes memory otherSideCalldata = _metarouteTransaction.otherSideCalldata;

assembly {

 mstore(add(otherSideCalldata, 100), finalSwapAmountIn)

}

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Logical Fault , ,

The contract performs arbitrary approve invocations which allow crafted payloads to extract any funds at
rest within the contract.

contracts/metarouter/MetaRouterV2.sol

MRV-02M: Arbitrary Approvals

MetaRouterV2.sol:L36-L39 L61-L64 L76-L79

Description:

Example:

function metaRouteV2(

 MetaRouteStructs.MetaRouteTransactionV2 memory _metarouteTransaction

) external payable {

 uint256 firstSwapValue;

 uint256 approvedTokensLength = _metarouteTransaction.approvedTokens.length;

 if (!_metarouteTransaction.nativeIn) {

 TransferHelper.safeTransferFrom(

 _metarouteTransaction.approvedTokens[0],

 _msgSender(),

 address(this),

 _metarouteTransaction.amount

);

 }

 uint256 secondSwapAmountIn = _metarouteTransaction.amount;

 if (_metarouteTransaction.firstSwapCalldata.length != 0) {

 if (!_metarouteTransaction.nativeIn) {

 IERC20(_metarouteTransaction.approvedTokens[0]).approve(

 _metarouteTransaction.firstDexRouter,

 _metarouteTransaction.amount

);

 }

 (bool firstSwapSuccess,) = _metarouteTransaction

 .firstDexRouter

 .call{value : msg.value}(_metarouteTransaction.firstSwapCalldata);

 require(firstSwapSuccess, "MetaRouterV2: first swap failed");

SOL

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Copy

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L36-L39
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L61-L64
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L76-L79
https://omniscia.io/symbiosis-finance-router-bridge/

While funds are not expected to remain at rest, it is still advisable to perform approvals only to
authorized exchanges and to validate that a swap was indeed made before performing the final
transaction. In general, the router should identify the amounts it received via the return arguments of the

th th l d i i ti

 secondSwapAmountIn = IERC20(

 _metarouteTransaction.approvedTokens[1]

).balanceOf(address(this));

 }

 uint256 finalSwapAmountIn = secondSwapAmountIn;

 if (_metarouteTransaction.secondSwapCalldata.length != 0) {

 bytes memory secondSwapCalldata = _metarouteTransaction.secondSwapCalldata;

 assembly {

 mstore(add(secondSwapCalldata, 100), secondSwapAmountIn)

 }

 IERC20(_metarouteTransaction.approvedTokens[approvedTokensLength - 2]).appr

 _metarouteTransaction.secondDexRouter,

 secondSwapAmountIn

);

 (bool secondSwapSuccess,) = _metarouteTransaction.secondDexRouter.call(

 secondSwapCalldata

);

 require(secondSwapSuccess, "MetaRouterV2: second swap failed");

 finalSwapAmountIn = IERC20(

 _metarouteTransaction.approvedTokens[approvedTokensLength - 1]

).balanceOf(address(this));

 }

 IERC20(_metarouteTransaction.approvedTokens[approvedTokensLength - 1]).approve(

 _metarouteTransaction.relayRecipient,

 finalSwapAmountIn

);

 bytes memory otherSideCalldata = _metarouteTransaction.otherSideCalldata;

 assembly {

 mstore(add(otherSideCalldata, 100), finalSwapAmountIn)

 }

 (bool otherSideCallSuccess,) = _metarouteTransaction.relayRecipient

 .call(otherSideCalldata);

 require(otherSideCallSuccess, "MetaRouterV2: other side call failed");

}

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

Recommendation:

https://omniscia.io/symbiosis-finance-router-bridge/

swaps rather than rely on dynamic balanceOf invocations.

The Symbiosis Finance team stated that given the context of the contract any allowance will not pose a
threat to other users or the network and as such they opt to not remediate it.

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Standard Conformity

The linked code performs an "infinity" allowance to the router it is meant to interact with, a programming
paradigm that is advised against.

contracts/metarouter/MetaRouterV2.sol

We advise the allowance to be set to exactly the value necessary to avoid potential complications due to
unspent allowance .

MRV-03M: Ill-Advised Allowance Pattern

MetaRouterV2.sol:L145-L148

Description:

Example:

function _swap(

 address _token,

 uint256 _amount,

 address _router,

 bytes memory _swapCalldata,

 uint256 _offset

) internal returns (bool success) {

 if (IERC20(_token).allowance(address(this), _router) < _amount) {

 IERC20(_token).approve(

 _router,

 type(uint256).max

);

 }

 assembly {

 mstore(add(_swapCalldata, _offset), _amount)

 }

 (success,) = _router.call(_swapCalldata);

}

SOL

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Copy

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#standard-conformity
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L145-L148
https://omniscia.io/symbiosis-finance-router-bridge/

The Symbiosis Finance team stated that given the context of the contract any allowance will not pose a
threat to other users or the network and as such they opt to not remediate it.

https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Logical Fault

The MetaRouterV2 contract is able to receive native assets, however, no function exists in the contract
that utilizes funds received as an argument.

contracts/metarouter/MetaRouterV2.sol

Presumably, this function was introduced to allow native outputs in the swaps the contract performs,
however, no outward native asset transfer is performed by the contract that utilizes converted or existing
(address(this).balance) funds. As a result, we advise the function to be omitted from the contract.

The receive function has been omitted from the codebase as per our recommendation.

MRV-04M: Improper receive Function

MetaRouterV2.sol:L15

Description:

Example:

receive() external payable {}

SOL

15

Copy

Recommendation:

Alleviation:

View Fix on GitHub

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L15
https://omniscia.io/symbiosis-finance-router-bridge/

Portal Manual Review Findings

Type Severity Location

Logical Fault

The revertBurnRequest applies no access control on the caller, allowing arbitrary users to inspect the
blockchain mempool and cancel upcoming synthesizes by front-running them with a crafted _txID .

contracts/synth-contracts/Portal.sol

POR-01M: Inexistent Access Control for Reverts

Portal.sol:L373-L412

Description:

Example:

/**

 * @notice Revert burnSyntheticToken() operation

 * @dev Can called only by bridge after initiation on a second chain

 * @dev Further, this transaction also enters the relay network and is called on th

 * @param _txID the synthesize transaction that was received from the event when it

 * @param _receiveSide Synthesis address on another network

 * @param _oppositeBridge Bridge address on another network

 * @param _chainId Chain id of the network

 */

function revertBurnRequest(

 uint256 _stableBridgingFee,

 bytes32 _txID,

 address _receiveSide,

 address _oppositeBridge,

 uint256 _chainId

) external payable whenNotPaused {

 bytes32 externalID = keccak256(abi.encodePacked(_txID, address(this), block.cha

require(

SOL

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

Copy

O N T H I S PAG E

POR-01M: Inexistent Access Control for Reverts

POR-02M: Improper receive Function

POR-03M: Potential of Repeat Invocation

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Portal.sol#L373-L412
https://omniscia.io/symbiosis-finance-router-bridge/

We advise access control to be imposed here properly by allowing the function to only be invoked by the
bridge as per the documentation.

The external ID system now utilizes the _msgSender() argument as well thereby ensuring that the ID of a
different party cannot be provided and thus alleviating this exhibit.

 require(

 unsynthesizeStates[externalID] != UnsynthesizeState.Unsynthesized,

 "Symb: Real tokens already transfered"

);

 unsynthesizeStates[externalID] = UnsynthesizeState.RevertRequest;

 {

 bytes memory out = abi.encodeWithSelector(

 bytes4(keccak256(bytes("revertBurn(uint256,bytes32)"))),

 _stableBridgingFee,

 externalID

);

 IBridge(bridge).transmitRequestV2(

 out,

 _receiveSide,

 _oppositeBridge,

 _chainId

);

 }

 emit RevertBurnRequest(_txID, _msgSender());

}

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Logical Fault

The Portal contract is able to receive native assets, however, no function exists in the contract that
utilizes funds received as an argument.

contracts/synth-contracts/Portal.sol

We advise the function to be omitted from the contract to avoid locked native assets.

The receive function has been omitted from the codebase as per our recommendation.

POR-02M: Improper receive Function

Portal.sol:L585

Description:

Example:

receive() external payable {}

SOL

585

Copy

Recommendation:

Alleviation:

View Fix on GitHub

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Portal.sol#L585
https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Logical Fault

The setMetaRouter function can be invoked an arbitrary number of times and set a sensitive contract
variable.

contracts/synth-contracts/Portal.sol

We advise it to only be settable once as otherwise a malicious owner can front-run a potential
synthesization by setting the metaRouter to a malicious contract prior to a transaction's execution by the
network.

The Symbiosis Finance team stated that while they are aware of the power of this feature, they consider it
essential to their project and in order to alleviate concerns they will ensure that the owner of the contract
will sit behind a multisignature wallet and timelock implementation. As such, we consider this exhibit
adequately dealt with.

POR-03M: Potential of Repeat Invocation

Portal.sol:L444-L450

Description:

Example:

/**

 * @notice Sets MetaRouter address

 */

function setMetaRouter(IMetaRouterV2 _metaRouter) external onlyOwner {

 require(address(_metaRouter) != address(0), "Symb: metaRouter cannot be zero ad

 metaRouter = _metaRouter;

}

SOL

444

445

446

447

448

449

450

Copy

Recommendation:

Alleviation:

View Fix on GitHub

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Portal.sol#L444-L450
https://omniscia.io/symbiosis-finance-router-bridge/

https://omniscia.io/symbiosis-finance-router-bridge/

SyntERC20 Manual Review Findings

Type Severity Location

Logical Fault

The burn function of the SyntERC20 token allows the owner to burn units from an arbitrary account.

contracts/synth-contracts/SyntERC20.sol

We advise a burnFrom paradigm to be utilized instead whereby the user has provided sufficient
allowance to the owner to burn those units to prevent misuse.

The Symbiosis Finance team stated that the owner will always be the SyntFabric contract and as such
no arbitrary burn operation can be executed.

SER-01M: Arbitrary Burn Operations

SyntERC20.sol:L16-L18

Description:

Example:

function burn(address account, uint256 amount) external onlyOwner {

 _burn(account, amount);

}

SOL

16

17

18

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

SER-01M: Arbitrary Burn Operations

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/SyntERC20.sol#L16-L18
https://omniscia.io/symbiosis-finance-router-bridge/

Synthesis Manual Review Findings

Type Severity Location

Logical Fault

The revertSynthesizeRequest applies no access control on the caller, allowing arbitrary users to
inspect the blockchain mempool and cancel upcoming synthesizes by front-running them with a crafted
_txID .

contracts/synth-contracts/Synthesis.sol

SYN-01M: Inexistent Access Control for Reverts

Synthesis.sol:L226-L232

Description:

Example:

/**

 * @notice Revert synthesize() operation

 * @dev Can called only by bridge after initiation on a second chain

 * @dev Further, this transaction also enters the relay network and is called on th

 * @param _txID the synthesize transaction that was received from the event when it

 * @param _receiveSide Synthesis address on another network

 * @param _oppositeBridge Bridge address on another network

 * @param _chainID Chain id of the network

 */

function revertSynthesizeRequest(

 uint256 _stableBridgingFee,

 bytes32 _txID,

 address _receiveSide,

 address _oppositeBridge,

uint256 chainID

SOL

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

Copy

O N T H I S PAG E

SYN-01M: Inexistent Access Control for Reverts

SYN-02M: Improper Reversion of Burn

SYN-03M: Inconsistent Event Amount

SYN-04M: Inexistent Validation of Token Existence

SYN-05M: Potential of Repeat Invocation

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L226-L232
https://omniscia.io/symbiosis-finance-router-bridge/

We advise access control to be imposed here properly by allowing the function to only be invoked by the
bridge as per the documentation.

The external ID system now utilizes the _msgSender() argument as well thereby ensuring that the ID of a
different party cannot be provided and thus alleviating this exhibit.

 uint256 _chainID

) external whenNotPaused {

 bytes32 externalID = keccak256(abi.encodePacked(_txID, address(this), block.cha

 require(

 synthesizeStates[externalID] != SynthesizeState.Synthesized,

 "Symb: synthetic tokens already minted"

);

 synthesizeStates[externalID] = SynthesizeState.RevertRequest; // close

 {

 bytes memory out = abi.encodeWithSelector(

 bytes4(keccak256(bytes("revertSynthesize(uint256,bytes32)"))),

 _stableBridgingFee,

 externalID

);

 IBridge(bridge).transmitRequestV2(

 out,

 _receiveSide,

 _oppositeBridge,

 _chainID

);

 }

 emit RevertSynthesizeRequest(_txID, _msgSender());

}

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Logical Fault

The revertBurn function does not properly revert the burn action as the recipient of the burn
operation is not reimbursed for the full amount they burned and instead the bridging fee is applied
again.

contracts/synth-contracts/Synthesis.sol

SYN-02M: Improper Reversion of Burn

Synthesis.sol:L394-L423

Description:

Example:

/**

 * @notice Emergency unburn

 * @dev Can called only by bridge after initiation on a second chain

 * @param _txID the synthesize transaction that was received from the event when it

 */

function revertBurn(uint256 _stableBridgingFee, bytes32 _txID) external onlyBridge

 TxState storage txState = requests[_txID];

 require(

 txState.state == RequestState.Sent,

 "Symb: state not open or tx does not exist"

);

 txState.state = RequestState.Reverted;

 // close

 ISyntFabric(fabric).synthesize(

 txState.recipient,

 txState.amount - _stableBridgingFee,

 txState.stoken

);

 ISyntFabric(fabric).synthesize(

 bridge,

 _stableBridgingFee,

 txState.stoken

);

 emit RevertBurnCompleted(

 _txID,

 txState.recipient,

 txState.amount,

 txState.stoken

SOL

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

Copy

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L394-L423
https://omniscia.io/symbiosis-finance-router-bridge/

We advise this trait of the system to be re-evaluated and the bridge fee to potentially not be applied for
emergency reversions.

The Symbiosis Finance team stated that this is indeed by design as the relayers of the cross-chain
interaction need to be compensated and will have utilized off-chain resources. As a result, we consider
this exhibit null.

 txState.stoken

);

}

421

422

423

Recommendation:

Alleviation:

View Fix on GitHub

https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Standard Conformity , , , ,

The SynthesizeCompleted event has an inconsistent amount emitted, at one instance emitting the full
amount inclusive of the minting fee and at the other emitting the amount sans the fee.

contracts/synth-contracts/Synthesis.sol

We advise the event emissions to be synced to ensure that off-chain processes properly process the
amounts synthesize, especially in a layer-2 sensitive system such as a bridge.

SYN-03M: Inconsistent Event Amount

Synthesis.sol:L142 L151 L178 L188 L193

Description:

Example:

ISyntFabric(fabric).synthesize(

 address(this),

 _metaMintTransaction.amount - _metaMintTransaction.stableBridgingFee,

 syntReprAddr

);

ISyntFabric(fabric).synthesize(

 bridge,

 _metaMintTransaction.stableBridgingFee,

 syntReprAddr

);

_metaMintTransaction.amount = _metaMintTransaction.amount - _metaMintTransaction.st

emit SynthesizeCompleted(

 _metaMintTransaction.txID,

 _metaMintTransaction.to,

 _metaMintTransaction.amount,

 _metaMintTransaction.tokenReal

);

SOL

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

Copy

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#standard-conformity
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L142
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L151
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L178
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L188
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L193
https://omniscia.io/symbiosis-finance-router-bridge/

The event emissions were standardized to emit the amount sans the fee across the code.

View Fix on GitHub

https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Logical Fault ,

The linked synthesization lookups do not guarantee that the address exists yet the code assumes so.

contracts/synth-contracts/Synthesis.sol

We advise this to be evaluated by a proper require check to increase code legibility and aid in
debugging of the system.

A require check was introduced ensuring that the syntReprAddr retrieved is non-zero.

SYN-04M: Inexistent Validation of Token Existence

Synthesis.sol:L138 L171-L174

Description:

Example:

address syntReprAddr = ISyntFabric(fabric).getSyntRepresentation(

 _metaMintTransaction.tokenReal,

 _metaMintTransaction.chainID

);

ISyntFabric(fabric).synthesize(

 address(this),

 _metaMintTransaction.amount - _metaMintTransaction.stableBridgingFee,

 syntReprAddr

);

SOL

171

172

173

174

175

176

177

178

179

180

Copy

Recommendation:

Alleviation:

View Fix on GitHub

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L138
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L171-L174
https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Logical Fault

The setMetaRouter function can be invoked an arbitrary number of times and set a sensitive contract
variable.

contracts/synth-contracts/Synthesis.sol

We advise it to only be settable once as otherwise a malicious owner can front-run a potential
synthesization by setting the metaRouter to a malicious contract prior to a transaction's execution by the
network.

The Symbiosis Finance team stated that while they are aware of the power of this feature, they consider it
essential to their project and in order to alleviate concerns they will ensure that the owner of the contract
will sit behind a multisignature wallet and timelock implementation. As such, we consider this exhibit
adequately dealt with.

SYN-05M: Potential of Repeat Invocation

Synthesis.sol:L448-L454

Description:

Example:

/**

 * @notice Sets MetaRouter address

 */

function setMetaRouter(IMetaRouterV2 _metaRouter) external onlyOwner {

 require(address(_metaRouter) != address(0), "Symb: metaRouter cannot be zero ad

 metaRouter = _metaRouter;

}

SOL

448

449

450

451

452

453

454

Copy

Recommendation:

Alleviation:

View Fix on GitHub

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L448-L454
https://omniscia.io/symbiosis-finance-router-bridge/

https://omniscia.io/symbiosis-finance-router-bridge/

Wrapper Manual Review Findings

Type Severity Location

Language Specific

The transfer member exposed by payable address types has been deprecated as it does not reliably
execute and can fail in future updates of the EVM as it forwards a fixed gas stipend which is not
compatible with gas cost EIP upgrades such as EIP-2929.

contracts/synth-contracts/utils/Wrapper.sol

We advise a safe wrapper library to be utilized instead such as the sendValue function of the Address
library by OpenZeppelin which is guaranteed to execute under all circumstances.

WRA-01M: Deprecated Native Asset Transfer

Wrapper.sol:L30

Description:

Example:

function withdraw(uint256 amount) external {

 address payable payer = payable(_msgSender());

 require(balanceOf(payer) >= amount);

 _burn(payer, amount);

 payer.transfer(amount);

 emit Withdrawal(payer, amount);

}

SOL

26

27

28

29

30

31

32

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

WRA-01M: Deprecated Native Asset Transfer

WRA-02M: Improper receive Function

WRA-03M: Inexistent Validation of Amounts

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#language-specific
https://eips.ethereum.org/EIPS/eip-2929
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/utils/Wrapper.sol#L30
https://omniscia.io/symbiosis-finance-router-bridge/

The Symbiosis Finance team responded by stating this is meant to be used as a test contract and as such
they will not carry out any remediations for it.

https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Logical Fault

The Wrapper contract is able to receive native assets, however, no function exists in the contract that
utilizes funds received as an argument.

contracts/synth-contracts/utils/Wrapper.sol

We advise the function to be omitted from the contract to avoid locked native assets.

The Symbiosis Finance team responded by stating this is meant to be used as a test contract and as such
they will not carry out any remediations for it.

WRA-02M: Improper receive Function

Wrapper.sol:L19

Description:

Example:

receive() external payable {}

SOL

19

Copy

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#logical-fault
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/utils/Wrapper.sol#L19
https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Input Sanitization ,

The deposit and withdraw functions of the contract do not validate that non-zero amounts are being
deposited and withdrawn respectively.

contracts/synth-contracts/utils/Wrapper.sol

We advise such sanitization to be imposed to avoid misleading events from being emitted.

The Symbiosis Finance team responded by stating this is meant to be used as a test contract and as such
they will not carry out any remediations for it.

WRA-03M: Inexistent Validation of Amounts

Wrapper.sol:L21 L26

Description:

Example:

function deposit() external payable {

 _mint(_msgSender(), msg.value);

 emit Deposit(_msgSender(), msg.value);

}

function withdraw(uint256 amount) external {

 address payable payer = payable(_msgSender());

 require(balanceOf(payer) >= amount);

 _burn(payer, amount);

 payer.transfer(amount);

 emit Withdrawal(payer, amount);

}

SOL

21

22

23

24

25

26

27

28

29

30

31

32

Copy

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#input-sanitization
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/utils/Wrapper.sol#L21
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/utils/Wrapper.sol#L26
https://omniscia.io/symbiosis-finance-router-bridge/

BridgeV2 Code Style Findings

Type Severity Location

Gas Optimization

The mpc function is meant to retrieve either the newMPC or oldMPC variable depending on the
newMPCEffectiveTime , however, the variable's value is always set to block.timestamp across the
contract rendering the check redundant.

contracts/synth-contracts/bridge-v2/BridgeV2.sol

BV2-01C: Redundant Logical Block

BridgeV2.sol:L63-L69

Description:

Example:

/// ** INITIALIZER **

function initialize(address _mpc) public virtual initializer {

 __Ownable_init();

 newMPC = _mpc;

 newMPCEffectiveTime = block.timestamp;

}

/// ** VIEW functions **

/**

 * @notice Returns MPC

 */

function mpc() public view returns (address) {

 if (block.timestamp >= newMPCEffectiveTime) {

 return newMPC;

 }

 return oldMPC;

SOL

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Copy

O N T H I S PAG E

BV2-01C: Redundant Logical Block

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#gas-optimization
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/bridge-v2/BridgeV2.sol#L63-L69
https://omniscia.io/symbiosis-finance-router-bridge/

}

/**

 * @notice Returns chain ID of block

 */

function currentChainId() public view returns (uint256) {

 return block.chainid;

}

/// ** MPC functions **

/**

 * @notice Changes MPC

 */

function changeMPC(address _newMPC) external onlyMPC returns (bool) {

 require(_newMPC != address(0), "BridgeV2: address(0x0)");

 oldMPC = mpc();

 newMPC = _newMPC;

 newMPCEffectiveTime = block.timestamp;

 emit LogChangeMPC(

 oldMPC,

 newMPC,

 newMPCEffectiveTime,

 currentChainId()

);

 return true;

}

/**

* @notice Get commission by MPC

 */

function getCommissionByMPC(address token, address to, uint256 amount) external onl

 TransferHelper.safeTransfer(token, to, amount);

 return true;

}

/**

 * @notice Changes MPC (onlyOwner)

 */

function changeMPCByOwner(address _newMPC) external onlyOwner returns (bool) {

 require(_newMPC != address(0), "BridgeV2: address(0x0)");

 oldMPC = mpc();

 newMPC = _newMPC;

 newMPCEffectiveTime = block.timestamp;

 emit LogChangeMPC(

 oldMPC,

 newMPC,

 newMPCEffectiveTime,

 currentChainId()

);

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

https://omniscia.io/symbiosis-finance-router-bridge/

We advise the mpc function to retrieve newMPC directly, optimizing its gas cost.

The Symbiosis Finance team considered this exhibit but opted not to apply a remediation for it in the
current iteration.

 return true;

}

119

120

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/

MetaRouterV2 Code Style Findings

Type Severity Location

Gas Optimization , ,

The linked function arguments are set as memory yet are declared in external functions.

contracts/metarouter/MetaRouterV2.sol

We advise them to be set as calldata optimizing their read-access gas cost.

All linked instances were properly adjusted to calldata .

MRV-01C: Data Location Optimization

MetaRouterV2.sol:L19 L95 L102

Description:

Example:

function metaMintSwap(

 MetaRouteStructs.MetaMintTransaction memory _metaMintTransaction

) external {

SOL

101

102

103

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

MRV-01C: Data Location Optimization

MRV-02C: Redundant constructor Implementation

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#gas-optimization
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L19
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L95
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L102
https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Gas Optimization

The linked constructor is redundant.

contracts/metarouter/MetaRouterV2.sol

We advise it to be omitted from the codebase.

The constructor function has been omitted from the codebase as per our recommendation.

MRV-02C: Redundant constructor Implementation

MetaRouterV2.sol:L16

Description:

Example:

constructor() public {}

SOL

16

Copy

Recommendation:

Alleviation:

View Fix on GitHub

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#gas-optimization
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/metarouter/MetaRouterV2.sol#L16
https://omniscia.io/symbiosis-finance-router-bridge/

Portal Code Style Findings

Type Severity Location

Code Style ,

The linked require checks have no error messages explicitly defined.

contracts/synth-contracts/Portal.sol

We advise them to be set so to aid in the validation of the require 's condition as well as the legibility of
the codebase.

Proper error messages were introduced for all linked instances.

POR-01C: Inexistent Error Messages

Portal.sol:L84 L89

Description:

Example:

require(!paused);

SOL

89

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

POR-01C: Inexistent Error Messages

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#code-style
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Portal.sol#L84
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Portal.sol#L89
https://omniscia.io/symbiosis-finance-router-bridge/

RelayRecipientUpgradeable Code Style Findings

Type Severity Location

Standard Conformity

The RelayRecipientUpgradeable contract is meant to implement the ERC2771Context contract of
OpenZeppelin in an upgrade-compatible way, however, the said contract already exists under
metatx/ERC2771ContextUpgradeable in the @openzeppelin/contracts-upgradeable dependency.

contracts/synth-contracts/RelayRecipientUpgradeable.sol

We advise it to be utilized instead as there is no reason the _trustedForwarder should be mutable and
increases the contract's gas cost.

RRU-01C: Redundant Implementation

RelayRecipientUpgradeable.sol:L7-L57

Description:

Example:

import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";

abstract contract RelayRecipientUpgradeable is OwnableUpgradeable {

 address private _trustedForwarder;

 function __RelayRecipient_init(address trustedForwarder)

 internal

 initializer

 {

 __Ownable_init();

 _trustedForwarder = trustedForwarder;

 }

SOL

5

6

7

8

9

10

11

12

13

14

15

16

Copy

Recommendation:

O N T H I S PAG E

RRU-01C: Redundant Implementation

RRU-02C: Redundant Import

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#standard-conformity
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/RelayRecipientUpgradeable.sol#L7-L57
https://omniscia.io/symbiosis-finance-router-bridge/

The Symbiosis Finance team considered this exhibit but opted not to apply a remediation for it in the
current iteration.

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Code Style ,

The RelayRecipientUpgradeable contract is set as OwnableUpgradeable yet none of that contract's
traits are utilized.

contracts/synth-contracts/RelayRecipientUpgradeable.sol

We advise the inheritence to be omitted.

The Symbiosis Finance team considered this exhibit but opted not to apply a remediation for it in the
current iteration.

RRU-02C: Redundant Import

RelayRecipientUpgradeable.sol:L5 L7

Description:

Example:

import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";

abstract contract RelayRecipientUpgradeable is OwnableUpgradeable {

SOL

5

6

7

Copy

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#code-style
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/RelayRecipientUpgradeable.sol#L5
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/RelayRecipientUpgradeable.sol#L7
https://omniscia.io/symbiosis-finance-router-bridge/

SyntERC20 Code Style Findings

Type Severity Location

Gas Optimization ,

The linked variable is assigned to only once during the contract's constructor .

contracts/synth-contracts/SyntERC20.sol

SER-01C: Variable Mutability Specifier

SyntERC20.sol:L10 L27

Description:

Example:

contract SyntERC20 is Ownable, ERC20Permit {

 uint8 private _decimals;

 function mint(address account, uint256 amount) external onlyOwner {

 _mint(account, amount);

 }

 function burn(address account, uint256 amount) external onlyOwner {

 _burn(account, amount);

 }

 function decimals() public view virtual override returns (uint8) {

 return _decimals;

 }

 constructor(string memory name_, string memory symbol_, uint8 decimals_)

 ERC20Permit("Symbiosis")

 ERC20(name_, symbol_) {

 decimals = decimals;

 }

}

SOL

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Copy

O N T H I S PAG E

SER-01C: Variable Mutability Specifier

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#gas-optimization
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/SyntERC20.sol#L10
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/SyntERC20.sol#L27
https://omniscia.io/symbiosis-finance-router-bridge/

We advise it to be set as immutable greatly optimizing the codebase.

The variable has been properly set as immutable optimizing the codebase.

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/

SyntFabric Code Style Findings

Type Severity Location

Code Style

The linked require checks have no error messages explicitly defined.

contracts/synth-contracts/SyntFabric.sol

We advise them to be set so to aid in the validation of the require 's condition as well as the legibility of
the codebase.

A proper error message was introduced for the linked instance.

SFC-01C: Inexistent Error Messages

SyntFabric.sol:L32

Description:

Example:

require(msg.sender == synthesis);

SOL

32

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

SFC-01C: Inexistent Error Messages

SFC-02C: Inexistent Function Implementations

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#code-style
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/SyntFabric.sol#L32
https://omniscia.io/symbiosis-finance-router-bridge/

Type Severity Location

Code Style ,

The code specification mentions functions that are no longer part of the codebase.

contracts/synth-contracts/SyntFabric.sol

We advise the comments to be revised to no longer mention deprecated code.

The Symbiosis Finance team considered this exhibit but opted not to apply a remediation for it in the
current iteration.

SFC-02C: Inexistent Function Implementations

SyntFabric.sol:L217 L218

Description:

Example:

/**

 * @dev Sets representation

 * @dev Internal function used in createRepresentationByAdmin, createRepresentation

 * createRepresentationByTokenOwnerSalted

 */

SOL

215

216

217

218

219

Copy

Recommendation:

Alleviation:

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#code-style
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/SyntFabric.sol#L217
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/SyntFabric.sol#L218
https://omniscia.io/symbiosis-finance-router-bridge/

Synthesis Code Style Findings

Type Severity Location

Code Style ,

The linked require checks have no error messages explicitly defined.

contracts/synth-contracts/Synthesis.sol

We advise them to be set so to aid in the validation of the require 's condition as well as the legibility of
the codebase.

Proper error messages were introduced for all linked instances.

SYN-01C: Inexistent Error Messages

Synthesis.sol:L80 L466

Description:

Example:

require(bridge == msg.sender);

SOL

80

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

SYN-01C: Inexistent Error Messages

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#code-style
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L80
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/Synthesis.sol#L466
https://omniscia.io/symbiosis-finance-router-bridge/

Wrapper Code Style Findings

Type Severity Location

Code Style

The linked variable has no visibility specifier explicitly set.

contracts/synth-contracts/utils/Wrapper.sol

We advise one to be set so to avoid potential compilation discrepancies in the future as the current
behaviour is for the compiler to assign one automatically which may deviate between pragma versions.

The private visibility specifier was properly introduced for the linked variable.

WRA-01C: Inexistent Visibility Specifier

Wrapper.sol:L9

Description:

Example:

address immutable _trustedForwarder;

SOL

9

Copy

Recommendation:

Alleviation:

O N T H I S PAG E

WRA-01C: Inexistent Visibility Specifier

https://omniscia.io/symbiosis-finance-router-bridge/appendix/finding-types#code-style
https://github.com/symbiosis-finance/contracts-audit-with-tests/blob/707f038827af3c900419d36a58c1ad5def057e4c/contracts/synth-contracts/utils/Wrapper.sol#L9
https://omniscia.io/symbiosis-finance-router-bridge/

Finding Types

A description of each finding type included in the report can be found below and is linked by
each respective finding. A full list of finding types Omniscia has defined will be viewable at the
central audit methodology we will publish soon.

O N T H I S PAG E

External Call Validation

Input Sanitization

Indeterminate Code

Language Specific

Code Style

Gas Optimization

Standard Conformity

Mathematical Operations

Logical Fault

Many contracts that interact with DeFi contain a set of complex external call executions that
need to happen in a particular sequence and whose execution is usually taken for granted
whereby it is not always the case. External calls should always be validated, either in the form
of require checks imposed at the contract-level or via more intricate mechanisms such as
invoking an external getter-variable and ensuring that it has been properly updated.

As there are no inherent guarantees to the inputs a function accepts, a set of guards should
always be in place to sanitize the values passed in to a particular function.

These types of issues arise when a linked code segment may not behave as expected, either
due to mistyped code, convoluted if blocks, overlapping functions / variable names and
other ambiguous statements.

Language specific issues arise from certain peculiarities that the Solidity language boasts that
discerns it from other conventional programming languages. For example, the EVM is a 256-
bit machine meaning that operations on less-than-256-bit types are more costly for the EVM
in terms of gas costs, meaning that loops utilizing a uint8 variable because their limit will
never exceed the 8-bit range actually cost more than redundantly using a uint256 variable.

An official Solidity style guide exists that is constantly under development and is adjusted on
each new Solidity release, designating how the overall look and feel of a codebase should be.
In these types of findings, we identify whether a project conforms to a particular naming
convention and whether that convention is consistent within the codebase and legible. In case
of inconsistencies, we point them out under this category. Additionally, variable shadowing
falls under this category as well which is identified when a local-level variable contains the
same name as a contract-level variable that is present in the inheritance chain of the local
execution level's context.

External Call Validation

Input Sanitization

Indeterminate Code

Language Specific

Code Style

Gas optimization findings relate to ways the codebase can be optimized to reduce the gas cost
involved with interacting with it to various degrees. These types of findings are completely
optional and are pointed out for the benefit of the project's developers.

These types of findings relate to incompatibility between a particular standard's
implementation and the project's implementation, oftentimes causing significant issues in the
usability of the contracts.

In Solidity, math generally behaves differently than other programming languages due to the
constraints of the EVM. A prime example of this difference is the truncation of values during a
division which in turn leads to loss of precision and can cause systems to behave incorrectly
when dealing with percentages and proportion calculations.

This category is a bit broad and is meant to cover implementations that contain flaws in the
way they are implemented, either due to unimplemented functionality, unaccounted-for edge
cases or similar extraordinary scenarios.

Gas Optimization

Standard Conformity

Mathematical Operations

Logical Fault

