
SMART CONTRACT AUDIT

November 11th 2022 | v.	1.0



score


95

PASS
Zokyo’s Security Team has concluded 
that this smart contract passes 
security qualifications to be listed on 
digital asset exchanges.



1

Symbiosis Smart Contract Audit

This document outlines the overall security of the Symbiosis smart contracts evaluated by the 
Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the Symbiosis smart contract codebase 
for quality, security, and correctness.

Contract Status

low Risk

Testable Code

The testable code is 95%, which is corresponds the industry standard of 95%. 

It should be noted that this audit is not an endorsement of the reliability or effectiveness of 
the contract, rather limited to an assessment of the logic and implementation. In order to 
ensure a secure contract that’s able to withstand the NEAR network’s fast-paced and rapidly 
changing environment, we at Zokyo recommend that the Symbiosis team put in place a bug 
bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

. . .



2

Symbiosis Smart Contract Audit

9Structure and Organization of Document

6Protocol Overview

5Executive Summary

3Auditing Strategy and Techniques Applied

Table of Contents

10Complete Analysis

. . .

21Code Coverage and Test Results for all files written by Zokyo Secured team

23Code Coverage and Test Results for all files written by Symbiosis team 



3

Symbiosis Smart Contract Audit

The source code of the smart contracts was taken from the Symbiosis repository.   
Repo: git: https://github.com/symbiosis-finance/near-contracts-audit

Contracts are written on Rust and are prepared for the NEAR blockchain



Initial commit:

dev branch, f70cda0cd54dc498dcabd3d609b78153a8637591

Final commit:

dev branch, 1333ce515b0a611e0b14b25d2ce24153e6b9c81e

Auditing Strategy and Techniques Applied

. . .

Within the scope of this audit, Zokyo auditors reviewed the following contract(s):

      contracts/bridge
 bridge/src/lib.rs
 bridge/src/receive_request.r
 bridge/src/mpc.rs
 bridge/src/oracle_request.rs
 bridge/src/storage.rs
 bridge/src/transmit_request.r
 bridge/src/transmitter.rs 




      contracts/metarouter
 bridge/src/lib.rs
 bridge/src/meta_route.r
 bridge/src/external_call.rs
 bridge/src/ft_receiver.rs
 bridge/src/util.rs 

      contracts/portal
 portal/src/ft_receiver.rs
 portal/src/lib.rs
 portal/src/storage.rs 
 portal/src/pause.rs 
 portal/src/synthesize.rs
 portal/src/unsynthesize.rs
 portal/src/token.rs




4

Symbiosis Smart Contract Audit

Auditing Strategy and Techniques Applied

. . .

Throughout the review process, Zokyo Security ensures that the contract:

Implements and adheres to the existing standards appropriately and effectively;
The documentation and code comments match the logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of resources, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Meets best practices in code readability, etc.

Zokyo Security has followed best practices and industry-standard techniques to verify the 
implementation of Symbiosis smart contracts. To do so, the code was reviewed line by line by 
our smart contract developers, who documented any issues as they were discovered. A part of 
this work included writing a unit test suite using the Truffle testing framework. In summary, 
our strategies consist largely of manual collaboration between multiple team members at 
each stage of the review:

1
Due diligence in assessing the overall 
code quality of the codebase.

2
Cross-comparison with other, similar 
smart contracts by industry leaders.

3
Testing contract logic against common 
and uncommon attack vectors.

4
Thorough manual review of the 
codebase, line by line.



5

Symbiosis Smart Contract Audit

EXECUTIVE Summary

. . .

The Symbiosis contracts represent the NEAR side of the Symbiosis bridge. The core bridge 
contract was created for the relayer to call other contracts (when triggered from the Relayer 
side). The portal mints and burns wrapped tokens for swaps, and Metarouter is used for 
calling other NEAR contracts (any contracts at all).



Zokyo Security checked the codebase and deeply analized the business logic of the contracts. 
The team also provided a set of unit and scenario tests, checked existing tests coverage, and 
provided extensive exploratory testing of contracts. As a result of the performed business 
logic analysis, the team of auditors prepared the detailed scheme of actions, roles, and 
processes within the contracts’ system. The team has also checked protocol’s sim and sandbox 
tests.



The overall code quality is good, it matches Rust best practices and has a sufficient suite of 
tests prepared. Nevertheless, the team has provided extensive checks against the roles and 
access control system, funds flow, gas usage, cross contract calls structure, and other apects 
regarding both business logic and NEAR-related best practices. The team detected 2 Medium-
level problems (with roles management and NEAR Rust types structure), which were fixed by 
the Symbiosis team. 



The main issue present in the project was the problem with the dependencies tree 
preparation. It influences the compilation and launch of modules connected to the Sandbox 
tests prepared by the team. Therefore, the team of auditors dedicated a lot of time to 
researching the reasons of the problem. Tests were verified by the Symbiosys team that 
prepared proofs that tests could be run on it side. Yet, Zokyo Security struggled with running 
tests on our side. The issue is connected to the work of the package tree dependencies 
building engine, which is out of the scope of the project and is connected purely to the NEAR 
toolkit. Thus, after several testing steps, the issue was resolved and the team verified tests 
suite running. Nevertheless, the common recommendation for the Symbiosis team is to pay 
attention on the proper package management sanitizing and provide an alternative testing 
line with the machines with different OSes.



Overall, the security of the project can be evaluated as High, the code conforms standard 
security checklist, and user flow of the protocol was checked against the auditors’ list of 
potential problems and loopholes.



6

Symbiosis Smart Contract Audit

. . .
protocol overview

Symbiosis portal

Symbiosis Bridge internal

Symbiosis metarouter

set_whitelist_token

receive_request_v2 receive_request_v2
_signed

transmit_request_v2

synthesize

meta_route ft_on_transfer

unsynthesize

get_oracle_request
s_by_block

_receive_request_v2

get_oracle_request
s_by_block_range

Synthesize tokens on 
target network (called by 

ft_on_transfer from 
symbiosis_metarouter)

All synthesizable tokens 
should be whitelisted 

before we call

  synthesize methods

Can be called only by 
MPC's account and used to 

call Portal

The function that initializes 
the exchange. Note that it is 

private and is called from 
ft_on_transfer call

Func has the similar 
functionality to function 

recive_request_v2, but it can 
call anyone who has signature.

Receives as arguments in 
the message such as first 

token, second token, portal, 
gas limit and others

Call synthesize or 
unsynthesize  
from portal

Reverse action to 
token synthesis

Used to fetch 
OracleRequests emitted in 
one block with pagination

Func has the similar 
functionality to function 

get_oracle_requests_by_bl
ock, but it can return 

requests by block range

Call meta_router 
with arguments

Only MPC can call
Call portal for 

synthesize/
unsynthesize

Send message to Relayer network so it knows 
what action and on what target network to 
perform. For example synthesized tokens



7

Symbiosis Smart Contract Audit

. . .
Protocol core flow

Portal

Bridge
Setup process

Owner calls

All synthesizeable 
tokens should be 

whitelisted before we 
call synthesize methods

Set the minimum 
number of tokens for 

synthesis. (Not 
necessarily)

Set portal that was 
set like transmitter

Set MPC (  means 
something like 

corporation owner)

 Set portal address 
for transmitter

For example USDC  
-> USDT

Call by ft_on_transfer 
method

meta_route (swap 
func)

Sender

MetaRouter

Swap process 
for the end user

Call portal 
synthesize

Swap Token 
Token1 - > Token2

Set token 
threshold amount

Set Whitelist token

Set portal

Set transmitter 
status

Set MPC



8

Symbiosis Smart Contract Audit

. . .
Protocol core flow

synthesize USDT

synthesize USDT

Send message to Relayer 
network so it knows


    what action and on 
what target network to 

perform.

Swap Token 
Token1 - > Token2

Near -> USDT

Send message to Relayer 
network so it knows


    what action and on 
what target network to 

perform.

Portal

For example USDC  
-> USDT

Portal

Call by ft_on_transfer 
method

meta_synthesize 
(synthesize token on 

target network)

Bridge

Bridge

meta_route (swap 
func)

meta_route (swap 
func)

Sender

MetaRouter

Swap process 
for the end user

MetaRouter

Swap process 
for the end user

Call portal 
synthesize

Swap Token 
Token1 - > Token2

Call bridge 
synthesize

transmit_request_v2

Sender

meta_synthesize 
(synthesize token on 

target network)

Call portal 
synthesize

transmit_request_v2



9

Symbiosis Smart Contract Audit

The issue has minimal impact on the 
contract’s ability to operate.

Low

The issue has no impact on the contract’s 
ability to operate.

Informational

The issue affects the ability of the contract 
to compile or operate in a significant way.

High

The issue affects the ability of the contract 
to operate in a way that doesn’t significantly 
hinder its behavior.

Medium

The issue affects the contract in such a way 
that funds may be lost, allocated incorrectly, 
or otherwise result in a significant loss.

Critical

For the ease of navigation, sections are arranged from the most to the least critical one. Issues 
are tagged as “Resolved” or “Unresolved” depending on whether they have been fixed or 
addressed. The issues that are tagged as “Verified” contain unclear or suspicious functionality 
that either needs explanation from the Customer’s side or remains disregarded by the 
Customer. Furthermore, the severity of each issue is written as assessed by the risk of 
exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

. . .



10

Symbiosis Smart Contract Audit

Complete Analysis

. . .

Medium-1

Lost role check on a portal set



Line. 78, symbiosis-bridge/src/lib.rs, function ‘set_portal’



Missing role for the method. Therefore, the method might generate some problems since an 
attacker can change the portal account in any time. An incorrect portal address will break the 
work of the receive request functionality since it relies on the internal portal state. The issue 
directly impacts the main funcionality but is marked as Medium since the owner of the 
protocol can still change the address back.

Recommendation:
Add an additional check depending on who can change the portal address



Medium-2

Wrong type in params



Line. 109,121, symbiosis-portal/src/synthesize.rs, function ‘revert_synthesize’



The NEAR request requires all money-related types to be passed as a string (U128 to be exact), 
and sdk relies on this type. Currently, this error will appear only at runtime since it’s not 
related to the compilation stage.

Recommendation:
Pass the amount as NEAR U128 instead of standard u128 type





11

Symbiosis Smart Contract Audit

. . .
Low-1

Value overflow is possible



Line. 190,208 symbiosis-metarouter/src/meta_router.rs, function ‘balance_callback’



A value overflow can be used to attack a smart contract

Recommendation:
It is necessary to check the value of the ‘second_amout_in’ variable



From the client:
The Symbiosis team stated that it is a private method that can be called only by the 
metarouter contract and that it fetches balances of the previously whitelisted tokens. Thus, 
they verify the current behaviour.

Info-1

Dependency issue

    This issue is connected to dependency problems in NEAR packages. This issue is not 
connected with the security of contracts, thus it is marked as informational. However, this 
case may cause troubles for the environment preparation and further development. The 
dependent ‘workspaces’ package (tests target) requires another package that is called ‘near-
jsonrpc-client’ and unfortunately it has some floats. Since each package of the project has its 
own list of required packages, there can almost always be cases when they require the same 
package but of different versions. Usually, there is no problem with different versions, except 
for the current case. The cargo module can increase the package version in within the major 
version of it because the maintenance team of each package cannot change the type or API of 
their crate. So the version within a major release should be interchangeable. But crates.io 
does not have it as a hard restriction. The audited project has 2 versions of near-primitives, 
which is 0.13.0 and 0.14.0 and both of them can be replaced by each other. But because of 
Cargo's ability to increase versions within the major one, it updates the ‘near-jsonrpc-client’ 
package to the 4.0.0-beta.0 version, which requires `near-primitives` 0.14.0.

    In the case explained above, the project is compilable and tests work fine. But in some 
cases, Cargo can pick up not the 4.0.0-beta.0 version of Near RPC, but the one before it, 4.0.0. 
And it’s crucial for the project because it requires near-primitives of a higher version, 0.15.0.





12

Symbiosis Smart Contract Audit

. . .
And since 0.15.0 is not compatible with the previous versions of this package (0.13.0 and 
0.14.0), the project becomes uncompilable.



The issue is caused by the work of a package manager engine. The most possible reason is 
that it cannot distinguish 4.0.0-beta.0 and 4.0.0 because of its internal parser functionality. 
One of the auditors suggests that since ‘0’ and ‘0-beta.0’ sub-versions look the same for Rust, it 
picks whatever it needs.



If this problems appears, you need to hardly set version of near RPC in Cargo.lock file.  
Here is the correct version:





The issue is marked as informational and is mentioned as a warning for the future 
environments preparation. Therefore, it is recommended for the team to take it into 
consideration and properly sanitize the Cargo.lock file.



Info-2

Failing test environment 

The team of auditors was facing a big problem with running sim tests that were dedicated to 
the dev team for at least one month. Those tests use a new NEAR test feature that is called 
‘sandbox’. Regular tests are based on direct calls to deployed contracts in local blockchain 
nodes. Sandbox uses an external process for a full blockchain node with a validator. And the 
environment described in Symbiosis project didn’t work on several different auditor’s 
workstations probably because of the flows in packages management or in parallel work 
between nodes, but it’s conjectured. 



13

Symbiosis Smart Contract Audit

. . .
Error states, that the process refused connection to local sandbox node. Example:

called `Result::unwrap()` on an `Err` value: Failed to connect to RPC service http://
localhost:19396 within 10 seconds: 
TransportError(SendError(PayloadSendError(reqwest::Error { kind: Request, url: Url { scheme: 
"http", cannot_be_a_base: false, username: "", password: None, host: 
Some(Domain("localhost")), port: Some(19396), path: "/", query: None, fragment: None }, 
source: hyper::Error(Connect, ConnectError("tcp connect error", Os { code: 111, kind: 
ConnectionRefused, message: "Connection refused" })) })))

thread 'test_bridge_set_mpc_signed' panicked at 'called `Result::unwrap()` on an `Err` value: 
Failed to connect to RPC service http://localhost:19396 within 10 seconds: 
TransportError(SendError(PayloadSendError(reqwest::Error { kind: Request, url: Url { scheme: 
"http", cannot_be_a_base: false, username: "", password: None, host: 
Some(Domain("localhost")), port: Some(19396), path: "/", query: None, fragment: None }, 
source: hyper::Error(Connect, ConnectError("tcp connect error", Os { code: 111, kind: 
ConnectionRefused, message: "Connection refused" })) })))', symbiosis-tests/tests/
suite.rs:29:50



This issue is present on several different machines, but others still show this:



`Error: Action #0: CompilationError(PrepareError(Instantiate))`



And none of the tests work because of it. Auditors tried to run sim tests sequentially - one by 
one in seperately built modules. This helps, and sometimes, there are successful runs, but 
runtime errors still appear.

Note: there were no problems with sandbox tests in clear environment, they appear after all 
Symbiosis dependencies are applied.

More info in the issue below.

Post-audit:
The team of auditors was able to launch sandbox tests within the Symbiosis environment. The 
environment was tested on several machines until the issue was resolved after the package 
engine was able to build the correct dependancy tree with NEAR packages. Thus, it is highly 
recommended for the Symbiois team to pay attention to the proper packages dependencies 
sanitizing since there is a chance to get a similar issue in the future.

From the client:
The Symbiosis team verifies that all tests can be run on their local machines - Macbooks with 
M2 and Intel i9 chips.



14

Symbiosis Smart Contract Audit

. . .
Info-3

As for the clarification for the sim test problem mentioned above (Info-2), Zokyo Security 
wants to clarify the steps they took.

The team faced two possible explanations of why sandbox sim tests can fail to run. The first is 
an error in connection to the sandbox node and the second one is a strange error without any 
additional info beyond it. Since the second one is more common, we spend additional time on 
trying to reanimate sim tests.

The problem appears on different hardware starting from some Intel-based laptops to 
desktop platforms (Ryzen 5 CPU on B550 chipset, Intel Core i5-10XXXF on some H series 
chipset). In case the problem was connected with the sandbox itself, one of othe auditors 
spent some time on recereating a test suite (the core functionality for setuping the test env) to 
downgrade it to be able to use old library - ‘near-skd-sim’ version 4.0.0-pre-9 (latest for the 
moment). And it produced a bit more clear error message:



Default sandbox error output:

`Error: Action #0: CompilationError(PrepareError(Instantiate))`



NEAR sim sdk output:

ExecutionOutcome { logs: [], receipt_ids: [

    `8W2ztqWuBVUMK9i1msS9rVDWEW1DJEfbDEpfTEBqPxvz`,

], burnt_gas: 2428064099776, tokens_burnt: 242806409977600000000, status: 
Failure(Action #0: PrepareError: Error happened during instantiation.) }



Therefore, the research narrowed the problem to the instantiation problem. It lead to the 
issue already described in the NEAR documentation:



https://docs.rs/near-vm-errors/2.2.0/near_vm_errors/enum.PrepareError.html

Error happened during instantiation.

This might indicate that start function trapped, or module isn't instantiable and/or 
unlinkable.



So now, the team of auditors knew that this error occurs when trying to start a VM. At this 
point, it was hard to tell if tests had any influence on it. Thus, auditors investigated how this 
error throws in the source code of the VM. 






15

Symbiosis Smart Contract Audit

. . .
Nearcore sources states: 

https://github.com/near/nearcore/blob/05e932f80642be7b1c7893fb090f48dd097df6a4/
runtime/near-vm-runner/src/prepare.rs#L495



In this file, we can see some cases of the error and how tests cover this case:



// nothing can be imported from non-"env" module for now.

    	let r =

        	parse_and_prepare_wat(r#"(module (import "another_module" "memory" (memory 
1 1)))"#);

    	assert_matches!(r, Err(PrepareError::Instantiate));



    	let r = parse_and_prepare_wat(r#"(module (import "env" 

"gas" (func (param i32))))"#);

    	assert_matches!(r, Ok(_));



Therefore, it’s most likely to be some kind of a linkage error.


Post-audit:

Zokyo Security was able to launch sandbox tests within the Symbiosis environment. The 
environment was tested on several machines until the issue was resolved after the package 
engine was able to build the correct dependancy tree with the Near packages. Thus, it is 
highly recommended for the Symbiois team to pay attention for the proper packages 
dependencies sanitizing since there is a chance to get a similar issue in the future.

From the client:
The Symbiosis team verifies that all tests can be run on their local machines - Macbooks with 
M2 and Intel i9 chips.



16

Symbiosis Smart Contract Audit

. . .
Info-4

Unnecessary late initialization



Line. 196 symbiosis-metarouter/src/meta_router.rs, function ‘balance_callback’



Checks for late initializations that can be replaced by a let statement with an initializer.

The issue is marked as informational as it refers to code best practices and performance.

Recommendation:
Declare ‘second_promise’ like this  



let second_promise = if args.second_function_name.len() > 0 {

From the client:
The Symbiosus team verified the chosen approach: on tge Symbiosi testing stage, they always 
attach the maximum gas amount (300_000_000_000_000) - it is required due to the size of the 
promise call chain.

Info-5

Gas test problem



Line. 90, symbiosis-metarouter/src/ft_receiver.rs, function ‘ft_on_transfer’



92,symbiosis-metarouter/src/meta_router.rs,function ‘storage_deposit_lazy’



159, symbiosis-portal/src/unsynthesize.rs, function 'meta_unsynthesize'



When writing unit tests, there is a problem with insufficient amount of gas to call the second 
callback in these lines. We assume that the problem occurs only in the mocked test version of 
the network. This error occurs due to the difference in the behavior of blockchain gas 
calculations with regard to the testnet version.




17

Symbiosis Smart Contract Audit

. . .

Info-7

Unnecessary late initialization



Line. 2219,239 contracts/symbiosis-portal/src/unsynthesize.rs 



Checks for late initializations that can be replaced by a let statement with an initializer.

The i is marked as informational as it refers to code best practices and performance.

Recommendation:
Declare ‘transfer_promise_1’ and ‘transfer_promise_2’ like this  

let transfer_promise_1 = if storage_balance == 0 {


Info-8

Redundant clone



Line. 50,52 contracts/symbiosis-portal/src/lib.rs



It is not always possible for the compiler to eliminate useless allocations and deallocations 
generated by redundant clone()s.

The issue is marked as informational as it refers to code best practices and performance.

Recommendation:
Delete clones 


Info-6

Redundant clone



Line. 124, 223, 238 contracts/symbiosis-metarouter/src/meta_route.rs



It is not always possible for the compiler to eliminate useless allocations and deallocations 
generated by redundant clone()s.

The issue is marked as informational as it refers to code best practices and performance.

Recommendation:
Delete clones 



18

Symbiosis Smart Contract Audit

. . .
Info-9

Error during instantiation.



Lines. 1,2 contracts/symbiosis-portal/src/synthesize.rs

Lines. 1,7,8 contracts/symbiosis-portal/src/unsynthesize.rs

Lines. 4 contracts/symbiosis-bridge/src/receive_request.rs

Lines. 1,2 packages/symbiosis-core/src/evm_calldata/unsynthesize.rs

Lines. 1,2 packages/symbiosis-core/src/evm_calldata/revert_burn.rs

Lines. 1,2 packages/symbiosis-core/src/evm_calldata/mint_synthetic_token.rs

Lines. 1,2 packages/symbiosis-core/src/evm_calldata/meta_unsynthesize.rs

Lines. 1,2 packages/symbiosis-core/src/evm_calldata/meta_mint_synthetic_token.rs



The error occurred during the instantiation (refer to Info-2 and Info-3). It was reproduced 
every time on the testnet after using any functions from the symbiosis-portal and symbiosis-
bridge contracts. The issue reproduces only during the build of those contracts that include 
‘ethabi’ crate(use ethabi::*;). Since symbiosis-core includes an ‘ethabi’ crate, all the contracts 
that include symbiosis-core have this issue too.

The error is reproducible on ordinary intel and amd architectures, though it looks like it is not 
reproducible on M1 chips. In spite of the problem being connected to the Near environment 
and its cross-platform compiler, it should be mentioned in the report. Due to the issue being 
present, it may have unpredictable behavior which may influence the mainnet deployment. 
The issue will not be treated as unresolved, though it should be present as a notice for the 
Symbiosis team.


Recommendation:
The best option is to contact the NEAR team and check any builds out of MacOS machines with 
M1 architecture (since the team reported that they have this environment), since it looks like it 
is the single working configuration. The issue is mostly connected with the “ethabi” package. 
Zokyo Security recommends paying attention for the proper sanitizing of the packages tree.

Post-audit:

The team of auditors was able to avoid the package problem within the Symbiosis 
environment. The environment was tested on several machines until the issue was resolved 
after the package engine was able to build the correct dependancy tree with the NEAR 
packages. Thus, it is highly recommended for the Symbiois team to pay attention for the 
proper packages dependencies sanitizing since a similar issue migh occur in the future.



19

Symbiosis Smart Contract Audit

. . .

PassAccess Management Hierarchy Pass

PassTypes Conformity, Over/Under Flows Pass

contracts/portal contracts/bridge 

PassPassCross-contract calls

PassPassHidden Malicious Code

PassPassUnchecked Return 
Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPass
Pool Asset Security 
(backdoors in the 
underlying token)

PassPassCorrect Accounts Usage Flow

PassPassUnexpected Tokens 

PassPassPublic Visibility Methods Access

PassPassEntropy Illusion (Lack of Randomness)

PassPassIncorrect Parameters Attack

PassPassRace Conditions/Front Running

PassPassUnsafe Rust Code

PassPassAuthentication



20

Symbiosis Smart Contract Audit

. . .

Access Management Hierarchy Pass

Types Conformity, Over/Under Flows Pass

contracts/metarouter 

PassCross-contract calls

PassHidden Malicious Code

PassUnchecked Return 
Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security 
(backdoors in the 
underlying token)

PassCorrect Accounts Usage Flow

PassUnexpected Tokens 

PassPublic Visibility Methods Access

PassEntropy Illusion (Lack of Randomness)

PassIncorrect Parameters Attack

PassRace Conditions/Front Running

PassUnsafe Rust Code

PassAuthentication



21

Symbiosis Smart Contract Audit

. . .

test_mpc_set_wrong

test_mpc_set_success

test_bridge_view_getters
contracts/symbiosis-bridge/src/transmitter.rs
test_transmit_request_unit

test_oracle_by_range_request_unit
contracts/symbiosis-portal/src/ft_receiver.rs
test_transfer_msg_serialize

test_migrate

test_set_meta_router
contracts/symbiosis-portal/src/pause.rs
test_pause_unpause
contracts/symbiosis-portal/src/synthesize.rs
test_revert_synthesize
contracts/symbiosis-portal/src/token.rs
test_set_unset_whitelist_token

test_set_unset_token_threshold
contracts/symbiosis-portal/src/unsynthesize.rs
test_synthesize_unsynthesize

test_get_unsynthesize_state

test_revert_burn_request

test_meta_unsynthesize (failing via incorrect Gas usage, only test env)

test_meta_unsynthesize_internal
contracts/symbiosis-metarouter/src/external_call.rs
test_external_call
contracts/symbiosis-metarouter/src/lib.rs
setup_contract

contracts/symbiosis-bridge/src/mpc.rs


As a part of our work assisting Symbiosis in verifying the correctness of their contract code, 
our team was responsible for writing integration tests using the Near testing framework.


The tests were based on the functionality of the code, as well as a review of the Symbiosis 
contract requirements for details about issuance amounts and how the system handles these.

Tests written by Zokyo Security

Code Coverage and Test Results for all files



22

Symbiosis Smart Contract Audit

. . .
contracts/symbiosis-metarouter/src/meta_route.rs
test_native_meta_route

test_meta_route

test_balance_callback

test_balance_callback_second_msq
contracts/symbiosis-metarouter/src/util.rs
test_parse_token_receiver_synth_caller_skip

test_parse_token_receiver_msq_empty

The team of auditors performed several rounds of testing, including the preparation of unit 
tests for the core user flows, manual testing over the locally deployed contracts, and checking 
the whole set of Sandbox tests prepared by the Symbiosis team.



23

Symbiosis Smart Contract Audit

test_new

test_default

test_transfer
contracts/symbiosis-metarouter/src/ft_receiver.rs
test_on_transfer_msg
contracts/symbiosis-metarouter/src/utils.rs
test_replace_amount_with_space

test_replace_amount

test_parse_token_receiver
contracts/symbiosis-portal/src/ft_receiver.rs
test_transfer_msg_serialize
symbiosis_tests/tests/test_bridge_mpc.rs
test_bridge_set_mpc

test_bridge_set_mpc_signed

test_bridge_set_mpc_signed_error
symbiosis_tests/tests/test_bridge_oracle_request.rs
symbiosis_tests/tests/test_bridge_oracle_request.rs
symbiosis_tests/tests/test_bridge_receive_request.rs
test_bridge_receive_request_v2

test_bridge_receive_request_v2_error

test_bridge_receive_request_v2_signed

test_bridge_receive_request_v2_signed_error
symbiosis_tests/tests/test_bridge_transmit_request.rs
test_bridge_transmit_request_v2
symbiosis_tests/tests/test_bridge_transmitter.rs
test_bridge_set_transmitter
test_bridge_set_transmitter
test_portal_synthesize

Code Coverage and Test Results for all files

Tests written by the Symbiosis team

As a part of our work assisting the Symbiosis team in verifying the correctness of their 
contract code, we have checked the full set of Sandbox and unit tests prepared by the 
Symbiosis team.

It needs to be mentioned that the original code has a significant original coverage with testing 
scenarios provided by the Symbiosis team. All of them were also carefully checked by the 
team of auditors.

contracts/ft/src/lib.rs



. . .



We are grateful for the opportunity to work with the Symbiosis team.



The statements made in this document should not be 
interpreted as an investment or legal advice, nor should its 
authors be held accountable for the decisions made based on 
them.



Zokyo Security recommends the Symbiosis team put in place a bug 
bounty program to encourage further analysis of the smart contract 
by third parties.


